The processes of microplastic fiber pollution in groundwater are unknown. The recent research on this contaminant threat is generally focused on surface waters (mainly oceans and rivers), while aquifer contamination is only marginally mentioned as an issue needing further investigation. Synthetic microfibers can be introduced into soils in different ways (e.g. wastewater treatment plants or greywater discharge, septic tank outflows, direct injection of contaminated water in cases of managed aquifer recharge, losing streams, etc.), and can thus reach aquifer systems due to leaching or infiltration in soil pores. Microfibers can then adsorb persistent bioaccumulative and toxic chemicals, which include persistent organic pollutants and metals, and become a carrier of harmful substances in the aquifer system, hence contributing to the overall contamination in both urban and rural areas. For this reason, it is of paramount importance, not only to assess the occurrence and fate of microplastic fibers in groundwater, but also to study the role of microplastics as carriers of contaminants within the aquifer and to advance standardization and organization of monitoring campaigns. Only by addressing these key challenges can hydrogeologists contribute to the state of the art on microplastic pollution and ensure that groundwater is not neglected in the environmental assessments tackling this contaminant of emerging concern.

Shedding light on the invisible: addressing the potential for groundwater contamination by plastic microfibers

Re V.
Primo
2019-01-01

Abstract

The processes of microplastic fiber pollution in groundwater are unknown. The recent research on this contaminant threat is generally focused on surface waters (mainly oceans and rivers), while aquifer contamination is only marginally mentioned as an issue needing further investigation. Synthetic microfibers can be introduced into soils in different ways (e.g. wastewater treatment plants or greywater discharge, septic tank outflows, direct injection of contaminated water in cases of managed aquifer recharge, losing streams, etc.), and can thus reach aquifer systems due to leaching or infiltration in soil pores. Microfibers can then adsorb persistent bioaccumulative and toxic chemicals, which include persistent organic pollutants and metals, and become a carrier of harmful substances in the aquifer system, hence contributing to the overall contamination in both urban and rural areas. For this reason, it is of paramount importance, not only to assess the occurrence and fate of microplastic fibers in groundwater, but also to study the role of microplastics as carriers of contaminants within the aquifer and to advance standardization and organization of monitoring campaigns. Only by addressing these key challenges can hydrogeologists contribute to the state of the art on microplastic pollution and ensure that groundwater is not neglected in the environmental assessments tackling this contaminant of emerging concern.
File in questo prodotto:
File Dimensione Formato  
Re2019_Article_SheddingLightOnTheInvisibleAdd.pdf

accesso aperto

Descrizione: Re2019_SheddingLightOnTheInvisible
Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/995882
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 73
  • ???jsp.display-item.citation.isi??? 59
social impact