Tolterodine (1) is a potent muscarinic receptor antagonist used in the treatment of overactive urinary bladder (OAB) syndrome. Tolterodine is chiral and it was patented, and is currently marketed, as the L-tartrate salt of the (R)-enantiomer. However, the existing literature does not offer an ultimate proof of a stereoselective mode of action of 1. A second open stereochemical issue concerns the absolute configuration (AC) of 1. Neither the original patents nor subsequent studies have established the AC of 1 in an unambiguous way, although the AC of the L-tartrate salt of 1 was assigned by X-ray diffractometry. Finally, neither electronic nor vibrational circular dichroism (ECD and VCD) spectra of 1 are reported so far. We performed a thorough ECD/VCD study of 1 in different solvents and at variable temperatures. Solvent and temperature dependence highlighted the existence of moderate flexibility which was confirmed by molecular modelling. ECD calculations with time-dependent density functional theory (TDDFT) accurately reproduced the experimental spectra and allowed us to confirm the AC of 1 in an independent way.
On the absolute stereochemistry of tolterodine: A circular dichroism study
Zullo V.Secondo
;Iuliano A.Penultimo
;Pescitelli G.
Ultimo
2019-01-01
Abstract
Tolterodine (1) is a potent muscarinic receptor antagonist used in the treatment of overactive urinary bladder (OAB) syndrome. Tolterodine is chiral and it was patented, and is currently marketed, as the L-tartrate salt of the (R)-enantiomer. However, the existing literature does not offer an ultimate proof of a stereoselective mode of action of 1. A second open stereochemical issue concerns the absolute configuration (AC) of 1. Neither the original patents nor subsequent studies have established the AC of 1 in an unambiguous way, although the AC of the L-tartrate salt of 1 was assigned by X-ray diffractometry. Finally, neither electronic nor vibrational circular dichroism (ECD and VCD) spectra of 1 are reported so far. We performed a thorough ECD/VCD study of 1 in different solvents and at variable temperatures. Solvent and temperature dependence highlighted the existence of moderate flexibility which was confirmed by molecular modelling. ECD calculations with time-dependent density functional theory (TDDFT) accurately reproduced the experimental spectra and allowed us to confirm the AC of 1 in an independent way.File | Dimensione | Formato | |
---|---|---|---|
pharmaceuticals-12-00021 (1).pdf
accesso aperto
Tipologia:
Versione finale editoriale
Licenza:
Creative commons
Dimensione
2.08 MB
Formato
Adobe PDF
|
2.08 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.