Autonomous mowers are battery-powered machines designed to mow turfgrass autonomously and continuously improving turfgrass quality and helping the person who takes care of the turf to save time and energy. However, autonomous mowers work in a way that sometimes does not match with the greenspace’s design. The aim of this study was to analyze greenspace features that can be a hindrance for autonomous mowers in order to provide greenspaces design suggestions and management solutions when using an autonomous mowing system. Seven greenspaces managed by autonomous mowers ranging from 200–9000 m2 were selected and studied. Interviews with the owners and on-site inspections were carried out to understand if manual interventions were required and to identify local plant communities. The results of the interviews showed that manual finishing work such as mowing grass along curbs and walls was needed in all the cases. Some cases needed manual interventions since autonomous mowers got stuck on because of shallow tree roots. Among the seven areas studied, the largest was chosen to be thoroughly analyzed in order to suggest two alternative design and management solutions and to carry out an economical comparison with the current state. When the inspection of this area was carried out, three autonomous mowers were used. Analyzing dierent management solutions showed that using only two autonomous mowers with specific technological devices was more advantageous. The costs of the current management solution using three autonomous mowers exceeded the costs of the suggested scenarios respectively of 2118.79 € and of 1451.15 €. Moreover, redesigning greenspaces with curbs slightly lower than grass and choosing trees with tap-root systems will help to avoid manual interventions. In this way, the eciency of autonomous mowers will be enhanced, helping to obtain all the benefits derived from using autonomous mowers.
Autonomous mower management systems efficiency improvement: analysis of greenspace features and planning suggestions
Sportelli, M;Martelloni, L;Pirchio, M;Fontanelli, M;Frasconi, C;Raffaelli, M;Peruzzi, A;Consorti, S B;Vernieri, P
2019-01-01
Abstract
Autonomous mowers are battery-powered machines designed to mow turfgrass autonomously and continuously improving turfgrass quality and helping the person who takes care of the turf to save time and energy. However, autonomous mowers work in a way that sometimes does not match with the greenspace’s design. The aim of this study was to analyze greenspace features that can be a hindrance for autonomous mowers in order to provide greenspaces design suggestions and management solutions when using an autonomous mowing system. Seven greenspaces managed by autonomous mowers ranging from 200–9000 m2 were selected and studied. Interviews with the owners and on-site inspections were carried out to understand if manual interventions were required and to identify local plant communities. The results of the interviews showed that manual finishing work such as mowing grass along curbs and walls was needed in all the cases. Some cases needed manual interventions since autonomous mowers got stuck on because of shallow tree roots. Among the seven areas studied, the largest was chosen to be thoroughly analyzed in order to suggest two alternative design and management solutions and to carry out an economical comparison with the current state. When the inspection of this area was carried out, three autonomous mowers were used. Analyzing dierent management solutions showed that using only two autonomous mowers with specific technological devices was more advantageous. The costs of the current management solution using three autonomous mowers exceeded the costs of the suggested scenarios respectively of 2118.79 € and of 1451.15 €. Moreover, redesigning greenspaces with curbs slightly lower than grass and choosing trees with tap-root systems will help to avoid manual interventions. In this way, the eciency of autonomous mowers will be enhanced, helping to obtain all the benefits derived from using autonomous mowers.File | Dimensione | Formato | |
---|---|---|---|
agriculture-09-00115.pdf
accesso aperto
Tipologia:
Versione finale editoriale
Licenza:
Creative commons
Dimensione
2.78 MB
Formato
Adobe PDF
|
2.78 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.