Vented deflagrations are one of the most challenging phenomenon to be replicated numerically in order to predict its resulting pressure time history. As a matter of fact a number of different phenomena can contribute to modify the burning velocity of a gas mixture undergoing a deflagration, especially when the flame velocity is considerably lower than the speed of sound. In these conditions acceleration generated by both the flow field induced by the expanding flame and from discontinuities, as the vent opening and the venting of the combustion products, affect the burning velocity and the burning behavior of the flame. In particular the phenomena affecting the pressure time history of a deflagration after the flame front reaches the vent area, such as flame acoustic interaction and local pressure peaks, seem to be closely related to a change in the burning behavior induced by the venting process. Flame acoustic interaction and local pressure peaks arise as a consequence of the change in the burning behavior of the flame. This paper discuss the analysis of the video recording of the flame front produced during the TP experimental campaign, performed by UNIPI in the project HySEA, to describe qualitatively the contribution of the generated flow field in a vented deflagration and its influence in the peaks of the pressure-time history.

The effect of venting process on the progress of a vented deflagration

Schiavetti M.
;
Pini T.;Carcassi M.
Primo
2019-01-01

Abstract

Vented deflagrations are one of the most challenging phenomenon to be replicated numerically in order to predict its resulting pressure time history. As a matter of fact a number of different phenomena can contribute to modify the burning velocity of a gas mixture undergoing a deflagration, especially when the flame velocity is considerably lower than the speed of sound. In these conditions acceleration generated by both the flow field induced by the expanding flame and from discontinuities, as the vent opening and the venting of the combustion products, affect the burning velocity and the burning behavior of the flame. In particular the phenomena affecting the pressure time history of a deflagration after the flame front reaches the vent area, such as flame acoustic interaction and local pressure peaks, seem to be closely related to a change in the burning behavior induced by the venting process. Flame acoustic interaction and local pressure peaks arise as a consequence of the change in the burning behavior of the flame. This paper discuss the analysis of the video recording of the flame front produced during the TP experimental campaign, performed by UNIPI in the project HySEA, to describe qualitatively the contribution of the generated flow field in a vented deflagration and its influence in the peaks of the pressure-time history.
2019
Schiavetti, M.; Pini, T.; Carcassi, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/997583
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 26
social impact