We study the regularity properties of solutions to the non-homogeneous singular p(x)-Laplacian system in a bounded domain of R^n. Under suitable restrictions on the range of p(x), we construct a W^{2,r} solution, with r>n, that implies the Hölder continuity of the gradient. Moreover, assuming just p(x)in(1,2) we prove that the second derivatives belong to L^2.
High regularity of the solution to the singular elliptic p(⋅)-Laplacian system
Grisanti, Carlo R.
Co-primo
2019-01-01
Abstract
We study the regularity properties of solutions to the non-homogeneous singular p(x)-Laplacian system in a bounded domain of R^n. Under suitable restrictions on the range of p(x), we construct a W^{2,r} solution, with r>n, that implies the Hölder continuity of the gradient. Moreover, assuming just p(x)in(1,2) we prove that the second derivatives belong to L^2.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
post print.pdf
solo utenti autorizzati
Descrizione: Article in press
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
758.25 kB
Formato
Adobe PDF
|
758.25 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Crispo Grisanti p(x) preprint.pdf
accesso aperto
Descrizione: Preprint
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
329.1 kB
Formato
Adobe PDF
|
329.1 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.