A combination of organic and conservation approaches have not been widely tested, neither considering agronomic implications nor the impacts on the environment. Focussing on the effect of agricultural practices on greenhouse gas (GHG) emissions from soil, the hypothesis of this research is that the organic conservation system (ORG+) may reduce emissions of N2O, CH4 and CO2 from soil, compared to an integrated farming system (INT) and an organic (ORG) system in a two-year irrigated vegetable crop rotation set up in 2014, in a Mediterranean environment. The crop rotation included: Savoy cabbage (Brassica oleracea var. sabauda L. cv. Famosa), spring lettuce (Lactuca sativa L. cv. Justine), fennel (Foeniculum vulgare Mill. cv. Montebianco) and summer lettuce (L. sativa cv. Ballerina). Fluxes from soil of N2O, CH4 and CO2 were measured from October 2014 to July 2016 with the flow-through non-steady state chamber technique using a mobile instrument equipped with high precision analysers. Both cumulative and daily N2O emissions were mainly lower in ORG+ than in INT and ORG. All the cropping systems acted as a sink of CH4, with no significant differences among treatments. The ORG and ORG+ systems accounted for higher cumulative and daily CO2 emissions than INT, maybe due to the stimulating effect on soil respiration of organic material (fertilizers/plant biomass) supplied in ORG and ORG+. Overall, the integration of conservation and organic agriculture showed a tendency for higher CO2 emissions and lower N2O emissions than the other treatments, without any clear results on its potential for mitigating GHG emissions from soil.
Greenhouse gas emissions from soil cultivated with vegetables in crop rotation under integrated, organic and organic conservation management in a Mediterranean environment
Antichi D.;Frasconi C.Ultimo
2019-01-01
Abstract
A combination of organic and conservation approaches have not been widely tested, neither considering agronomic implications nor the impacts on the environment. Focussing on the effect of agricultural practices on greenhouse gas (GHG) emissions from soil, the hypothesis of this research is that the organic conservation system (ORG+) may reduce emissions of N2O, CH4 and CO2 from soil, compared to an integrated farming system (INT) and an organic (ORG) system in a two-year irrigated vegetable crop rotation set up in 2014, in a Mediterranean environment. The crop rotation included: Savoy cabbage (Brassica oleracea var. sabauda L. cv. Famosa), spring lettuce (Lactuca sativa L. cv. Justine), fennel (Foeniculum vulgare Mill. cv. Montebianco) and summer lettuce (L. sativa cv. Ballerina). Fluxes from soil of N2O, CH4 and CO2 were measured from October 2014 to July 2016 with the flow-through non-steady state chamber technique using a mobile instrument equipped with high precision analysers. Both cumulative and daily N2O emissions were mainly lower in ORG+ than in INT and ORG. All the cropping systems acted as a sink of CH4, with no significant differences among treatments. The ORG and ORG+ systems accounted for higher cumulative and daily CO2 emissions than INT, maybe due to the stimulating effect on soil respiration of organic material (fertilizers/plant biomass) supplied in ORG and ORG+. Overall, the integration of conservation and organic agriculture showed a tendency for higher CO2 emissions and lower N2O emissions than the other treatments, without any clear results on its potential for mitigating GHG emissions from soil.File | Dimensione | Formato | |
---|---|---|---|
Bosco et al_2019.pdf
accesso aperto
Descrizione: Versione finale editoriale
Tipologia:
Versione finale editoriale
Licenza:
Creative commons
Dimensione
3.72 MB
Formato
Adobe PDF
|
3.72 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.