We study the θ dependence of the continuum limit of 2D UðNÞ gauge theories defined on compact manifolds, with special emphasis on spherical (g ¼ 0) and toroidal (g ¼ 1) topologies. We find that the coupling between Uð1Þ and SUðNÞ degrees of freedom survives the continuum limit, leading to observable deviations of the continuum topological susceptibility from the Uð1Þ behavior, especially for g ¼ 0, in which case deviations remain even in the large N limit.

Topological effects in continuum two-dimensional U(N) gauge theories

Claudio Bonati;Paolo Rossi
2019-01-01

Abstract

We study the θ dependence of the continuum limit of 2D UðNÞ gauge theories defined on compact manifolds, with special emphasis on spherical (g ¼ 0) and toroidal (g ¼ 1) topologies. We find that the coupling between Uð1Þ and SUðNÞ degrees of freedom survives the continuum limit, leading to observable deviations of the continuum topological susceptibility from the Uð1Þ behavior, especially for g ¼ 0, in which case deviations remain even in the large N limit.
2019
Bonati, Claudio; Rossi, Paolo
File in questo prodotto:
File Dimensione Formato  
Continuum U(N).pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 272.13 kB
Formato Adobe PDF
272.13 kB Adobe PDF Visualizza/Apri
PhysRevD.100.054502.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 387.52 kB
Formato Adobe PDF
387.52 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1004854
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact