We study the θ dependence of the continuum limit of 2D UðNÞ gauge theories defined on compact manifolds, with special emphasis on spherical (g ¼ 0) and toroidal (g ¼ 1) topologies. We find that the coupling between Uð1Þ and SUðNÞ degrees of freedom survives the continuum limit, leading to observable deviations of the continuum topological susceptibility from the Uð1Þ behavior, especially for g ¼ 0, in which case deviations remain even in the large N limit.
Topological effects in continuum two-dimensional U(N) gauge theories
Claudio Bonati;Paolo Rossi
2019-01-01
Abstract
We study the θ dependence of the continuum limit of 2D UðNÞ gauge theories defined on compact manifolds, with special emphasis on spherical (g ¼ 0) and toroidal (g ¼ 1) topologies. We find that the coupling between Uð1Þ and SUðNÞ degrees of freedom survives the continuum limit, leading to observable deviations of the continuum topological susceptibility from the Uð1Þ behavior, especially for g ¼ 0, in which case deviations remain even in the large N limit.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Continuum U(N).pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
272.13 kB
Formato
Adobe PDF
|
272.13 kB | Adobe PDF | Visualizza/Apri |
PhysRevD.100.054502.pdf
accesso aperto
Tipologia:
Versione finale editoriale
Licenza:
Creative commons
Dimensione
387.52 kB
Formato
Adobe PDF
|
387.52 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.