A new approach for climbing hard vertical surfaces has been developed that allows a robot to scale concrete, stucco, brick and masonry walls without using suction or adhesives. The approach is inspired by the mechanisms observed in some climbing insects and spiders and involves arrays of microspines that catch on surface asperities. The arrays are located on the toes of the robot and consist of a tuned, multi-link compliant suspension. The fundamental issues of spine allometric scaling versus surface roughness are discussed and the interaction between spines and surfaces is modeled. The toe suspension properties needed to maximize the probability that each spine will find a useable surface irregularity and to distribute climbing loads among many spines are detailed. The principles are demonstrated with a new climbing robot, SpinybotII, that can scale a wide range of flat exterior walls, carry a payload equal to its own weight, and cling without consuming power. The paper also reports how toe parameters scale with robot mass and how spines have also been used successfully on the larger RiSE robot.

Scaling Hard Vertical Surfaces with Compliant Microspine Arrays

LANZETTA, MICHELE
2006-01-01

Abstract

A new approach for climbing hard vertical surfaces has been developed that allows a robot to scale concrete, stucco, brick and masonry walls without using suction or adhesives. The approach is inspired by the mechanisms observed in some climbing insects and spiders and involves arrays of microspines that catch on surface asperities. The arrays are located on the toes of the robot and consist of a tuned, multi-link compliant suspension. The fundamental issues of spine allometric scaling versus surface roughness are discussed and the interaction between spines and surfaces is modeled. The toe suspension properties needed to maximize the probability that each spine will find a useable surface irregularity and to distribute climbing loads among many spines are detailed. The principles are demonstrated with a new climbing robot, SpinybotII, that can scale a wide range of flat exterior walls, carry a payload equal to its own weight, and cling without consuming power. The paper also reports how toe parameters scale with robot mass and how spines have also been used successfully on the larger RiSE robot.
2006
A. T., Asbeck; S., Kim; M. R., Cutkosky; W. R., Provancher; Lanzetta, Michele
File in questo prodotto:
File Dimensione Formato  
Scaling hard vertical surface.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 456.87 kB
Formato Adobe PDF
456.87 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/101026
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 248
  • ???jsp.display-item.citation.isi??? 206
social impact