A new approach for climbing hard vertical surfaces has been developed that allows a robot to scale concrete, stucco, brick and masonry walls without using suction or adhesives. The approach is inspired by the mechanisms observed in some climbing insects and spiders and involves arrays of microspines that catch on surface asperities. The arrays are located on the toes of the robot and consist of a tuned, multi-link compliant suspension. The fundamental issues of spine allometric scaling versus surface roughness are discussed and the interaction between spines and surfaces is modeled. The toe suspension properties needed to maximize the probability that each spine will find a useable surface irregularity and to distribute climbing loads among many spines are detailed. The principles are demonstrated with a new climbing robot, SpinybotII, that can scale a wide range of flat exterior walls, carry a payload equal to its own weight, and cling without consuming power. The paper also reports how toe parameters scale with robot mass and how spines have also been used successfully on the larger RiSE robot.
Scaling Hard Vertical Surfaces with Compliant Microspine Arrays
LANZETTA, MICHELE
2006-01-01
Abstract
A new approach for climbing hard vertical surfaces has been developed that allows a robot to scale concrete, stucco, brick and masonry walls without using suction or adhesives. The approach is inspired by the mechanisms observed in some climbing insects and spiders and involves arrays of microspines that catch on surface asperities. The arrays are located on the toes of the robot and consist of a tuned, multi-link compliant suspension. The fundamental issues of spine allometric scaling versus surface roughness are discussed and the interaction between spines and surfaces is modeled. The toe suspension properties needed to maximize the probability that each spine will find a useable surface irregularity and to distribute climbing loads among many spines are detailed. The principles are demonstrated with a new climbing robot, SpinybotII, that can scale a wide range of flat exterior walls, carry a payload equal to its own weight, and cling without consuming power. The paper also reports how toe parameters scale with robot mass and how spines have also been used successfully on the larger RiSE robot.File | Dimensione | Formato | |
---|---|---|---|
Scaling hard vertical surface.pdf
solo utenti autorizzati
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
456.87 kB
Formato
Adobe PDF
|
456.87 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.