Buildings account for the highest share of primary energy usage and greenhouse gas emission in the E.U. and U.S. [1], and most of this energy is used for space and water heating. Being able to gain a broader understanding of the gap between predicted and in situ measured thermal performance of buildings may, in a lot of cases, help reducing the energy consumption and, therefore, alleviating our pressure on the environment [2]. The aim of this research is to further investigate this performance gap and to evaluate the possibility of using machine learning algorithms to effectively predict the energy demand of buildings. For this purpose, a group of residential buildings in the city of Turin, Italy, is taken as case study: an estimation of their yearly heating demand is made using different machine learning algorithms, and their results are evaluated and discussed. The research showed that the use of machine learning resulted in a performance gap in line, if not lower, with the current literature. The reasons for this outcome, as well as possible future research directions are finally discussed.

Understanding the performance gap: a machine learning approach on residential buildings in Turin, Italy

BOGHETTI, ROBERTO;Fantozzi, Fabio;Salvadori, Giacomo
2019-01-01

Abstract

Buildings account for the highest share of primary energy usage and greenhouse gas emission in the E.U. and U.S. [1], and most of this energy is used for space and water heating. Being able to gain a broader understanding of the gap between predicted and in situ measured thermal performance of buildings may, in a lot of cases, help reducing the energy consumption and, therefore, alleviating our pressure on the environment [2]. The aim of this research is to further investigate this performance gap and to evaluate the possibility of using machine learning algorithms to effectively predict the energy demand of buildings. For this purpose, a group of residential buildings in the city of Turin, Italy, is taken as case study: an estimation of their yearly heating demand is made using different machine learning algorithms, and their results are evaluated and discussed. The research showed that the use of machine learning resulted in a performance gap in line, if not lower, with the current literature. The reasons for this outcome, as well as possible future research directions are finally discussed.
2019
Boghetti, Roberto; Fantozzi, Fabio; Kämpf, Jérôme H; Salvadori, Giacomo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1013800
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact