In this paper we investigate the behavior of the eigenvalues of the Dirichlet Laplacian on sets in RN whose first eigenvalue is close to the one of the ball with the same volume. In particular in our main Theorem 1.1 we prove that, for all k 2 N, there is a positive constant C D C.k; N / such that for every open set Ω ⊆ RN with unit measure and with λ1.Ω/ not excessively large one has jλk.Ω/ - λk.B/j ≤ C.λ1.Ω/ - λ1.B//β; λk.B/ - λk.Ω/ ≤ Cd.Ω/β'; where d.Ω/ is the Fraenkel asymmetry of Ω, and where β and β' are explicit exponents, not depending on k nor on N; for the special case N D 2, a better estimate holds.

Some estimates for the higher eigenvalues of sets close to the ball

Pratelli A.
2019-01-01

Abstract

In this paper we investigate the behavior of the eigenvalues of the Dirichlet Laplacian on sets in RN whose first eigenvalue is close to the one of the ball with the same volume. In particular in our main Theorem 1.1 we prove that, for all k 2 N, there is a positive constant C D C.k; N / such that for every open set Ω ⊆ RN with unit measure and with λ1.Ω/ not excessively large one has jλk.Ω/ - λk.B/j ≤ C.λ1.Ω/ - λ1.B//β; λk.B/ - λk.Ω/ ≤ Cd.Ω/β'; where d.Ω/ is the Fraenkel asymmetry of Ω, and where β and β' are explicit exponents, not depending on k nor on N; for the special case N D 2, a better estimate holds.
2019
Mazzoleni, D.; Pratelli, A.
File in questo prodotto:
File Dimensione Formato  
mazzoleni_pratelli_JST_accepted.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 335.86 kB
Formato Adobe PDF
335.86 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1017216
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact