We characterize the (sequentially) weak and strong closure of planar diffeomorphisms in the Sobolev topology and we show that they always coincide. We also provide some sufficient condition for a planar map to be approximable by diffeomorphisms in terms of the connectedness of its counter-images, in the spirit of Young's characterisation of monotone functions. We finally show that the closure of diffeomorphisms in the Sobolev topology is strictly contained in the class INV introduced by Müller and Spector.

The closure of planar diffeomorphisms in Sobolev spaces

Pratelli, A.
2020-01-01

Abstract

We characterize the (sequentially) weak and strong closure of planar diffeomorphisms in the Sobolev topology and we show that they always coincide. We also provide some sufficient condition for a planar map to be approximable by diffeomorphisms in terms of the connectedness of its counter-images, in the spirit of Young's characterisation of monotone functions. We finally show that the closure of diffeomorphisms in the Sobolev topology is strictly contained in the class INV introduced by Müller and Spector.
2020
De Philippis, G.; Pratelli, A.
File in questo prodotto:
File Dimensione Formato  
Pratelli_AIHP20.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 803.39 kB
Formato Adobe PDF
803.39 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Closure_diffeo_postprint.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 621.25 kB
Formato Adobe PDF
621.25 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1017218
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 16
social impact