The early stages of type 1 diabetes (T1D) are characterized by local autoimmune inflammation and progressive loss of insulin-producing pancreatic β cells. Here we show that exposure to proinflammatory cytokines reveals a marked plasticity of the β-cell regulatory landscape. We expand the repertoire of human islet regulatory elements by mapping stimulus-responsive enhancers linked to changes in the β-cell transcriptome, proteome and three-dimensional chromatin structure. Our data indicate that the β-cell response to cytokines is mediated by the induction of new regulatory regions as well as the activation of primed regulatory elements prebound by islet-specific transcription factors. We find that T1D-associated loci are enriched with newly mapped cis-regulatory regions and identify T1D-associated variants disrupting cytokine-responsive enhancer activity in human β cells. Our study illustrates how β cells respond to a proinflammatory environment and implicate a role for stimulus response islet enhancers in T1D.

The impact of proinflammatory cytokines on the β-cell regulatory landscape provides insights into the genetics of type 1 diabetes

Marchetti P.;
2019-01-01

Abstract

The early stages of type 1 diabetes (T1D) are characterized by local autoimmune inflammation and progressive loss of insulin-producing pancreatic β cells. Here we show that exposure to proinflammatory cytokines reveals a marked plasticity of the β-cell regulatory landscape. We expand the repertoire of human islet regulatory elements by mapping stimulus-responsive enhancers linked to changes in the β-cell transcriptome, proteome and three-dimensional chromatin structure. Our data indicate that the β-cell response to cytokines is mediated by the induction of new regulatory regions as well as the activation of primed regulatory elements prebound by islet-specific transcription factors. We find that T1D-associated loci are enriched with newly mapped cis-regulatory regions and identify T1D-associated variants disrupting cytokine-responsive enhancer activity in human β cells. Our study illustrates how β cells respond to a proinflammatory environment and implicate a role for stimulus response islet enhancers in T1D.
2019
Ramos-Rodriguez, M.; Raurell-Vila, H.; Colli, M. L.; Alvelos, M. I.; Subirana-Granes, M.; Juan-Mateu, J.; Norris, R.; Turatsinze, J. -V.; Nakayasu, E. S.; Webb-Robertson, B. -J. M.; Inshaw, J. R. J.; Marchetti, P.; Piemonti, L.; Esteller, M.; Todd, J. A.; Metz, T. O.; Eizirik, D. L.; Pasquali, L.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1017712
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 36
  • Scopus 85
  • ???jsp.display-item.citation.isi??? 80
social impact