A fast non‐destructive approach based on the use of portable selected ion flow tube-mass spectrometry (SIFT-MS) was used for the first time to characterize organic materials in archaeological artifacts. The high sensitivity, specificity and selectivity SIFT soft chemical ionization mass spectrometry enabled us to investigate the composition of organic residues collected from ancient Egyptian findings in order to demonstrate the robustness of the techniques with different matrices. In addition, we tested SIFT-MS directly on an archaeological Egyptian amphora to prove its suitability as a completely non-invasive technique. Parallel investigations on all the samples were performed by GC/MS analysis to correlate and confirm the data obtained by SIFT-MS. The possibility of using a portable mass spectrometer on an excavation site or in a museum would be a significant step forward in the non-invasive analysis of organic archaeological materials, enabling archeologists and conservators to obtain real-time information on the molecular composition of organic residues.

SIFT-ing archaeological artifacts: Selected ion flow tube-mass spectrometry as a new tool in archaeometry

La Nasa J.;Nardella F.;Modugno F.;Colombini M. P.;Ribechini E.;Degano I.
2020-01-01

Abstract

A fast non‐destructive approach based on the use of portable selected ion flow tube-mass spectrometry (SIFT-MS) was used for the first time to characterize organic materials in archaeological artifacts. The high sensitivity, specificity and selectivity SIFT soft chemical ionization mass spectrometry enabled us to investigate the composition of organic residues collected from ancient Egyptian findings in order to demonstrate the robustness of the techniques with different matrices. In addition, we tested SIFT-MS directly on an archaeological Egyptian amphora to prove its suitability as a completely non-invasive technique. Parallel investigations on all the samples were performed by GC/MS analysis to correlate and confirm the data obtained by SIFT-MS. The possibility of using a portable mass spectrometer on an excavation site or in a museum would be a significant step forward in the non-invasive analysis of organic archaeological materials, enabling archeologists and conservators to obtain real-time information on the molecular composition of organic residues.
La Nasa, J.; Nardella, F.; Modugno, F.; Colombini, M. P.; Ribechini, E.; Degano, I.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1017856
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 9
social impact