We lay the foundations for a theory of divergence-measure fields in noncommutative stratified nilpotent Lie groups. Such vector fields form a new family of function spaces, which generalize in a sense the BV fields. They provide the most general setting to establish Gauss–Green formulas for vector fields of low regularity on sets of finite perimeter. We show several properties of divergence-measure fields in stratified groups, ultimately achieving the related Gauss–Green theorem.

The Gauss–Green theorem in stratified groups

Magnani V.
2020-01-01

Abstract

We lay the foundations for a theory of divergence-measure fields in noncommutative stratified nilpotent Lie groups. Such vector fields form a new family of function spaces, which generalize in a sense the BV fields. They provide the most general setting to establish Gauss–Green formulas for vector fields of low regularity on sets of finite perimeter. We show several properties of divergence-measure fields in stratified groups, ultimately achieving the related Gauss–Green theorem.
2020
Comi, G. E.; Magnani, V.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1018130
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact