We show that, on a 2-dimensional compact manifold, the optimal transport map in the semi-discrete random matching problem is well-approximated in the L2-norm by identity plus the gradient of the solution to the Poisson problem −∆fn,t = µn,t − 1, where µn,t is an appropriate regularization of the empirical measure associated to the random points. This shows that the ansatz of [8] is strong enough to capture the behavior of the optimal map in addition to the value of the optimal matching cost. As part of our strategy, we prove a new stability result for the optimal transport map on a compact manifold.

On the optimal map in the 2-dimensional random matching problem

Trevisan D.
2019-01-01

Abstract

We show that, on a 2-dimensional compact manifold, the optimal transport map in the semi-discrete random matching problem is well-approximated in the L2-norm by identity plus the gradient of the solution to the Poisson problem −∆fn,t = µn,t − 1, where µn,t is an appropriate regularization of the empirical measure associated to the random points. This shows that the ansatz of [8] is strong enough to capture the behavior of the optimal map in addition to the value of the optimal matching cost. As part of our strategy, we prove a new stability result for the optimal transport map on a compact manifold.
2019
Ambrosio, L.; Glaudo, F.; Trevisan, D.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1019138
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact