A simple experimental method for piezoresponse force microscopy (PFM) measurements for reliable evaluation of piezoelectric surface displacements even on compliant surfaces is proposed based on atomic force microscopy (AFM) operated in frequency-modulation (FM) dynamic mode with constant excitation (CE), by using non-contact mode cantilevers. Surface displacement by piezoelectric effect after application of an electric potential to the conductive AFM probe translates into a likewise variation of the probe oscillation amplitude, while the related electrostatic forces mainly affect the oscillator resonant frequency, and cantilever bending is limited due to their high stiffness. Our non-contact CE-FM-PFM method is shown to reduce electrostatic force contributions as compared to contact-PFM modes. Converse piezoelectric effect mapping is demonstrated on poly(vinylidenefluoride) nanofibers obtained by electrospinning.

Piezoelectric displacement mapping of compliant surfaces by constant-excitation frequency-modulation piezoresponse force microscopy

Labardi M.
;
Capaccioli S.
2020-01-01

Abstract

A simple experimental method for piezoresponse force microscopy (PFM) measurements for reliable evaluation of piezoelectric surface displacements even on compliant surfaces is proposed based on atomic force microscopy (AFM) operated in frequency-modulation (FM) dynamic mode with constant excitation (CE), by using non-contact mode cantilevers. Surface displacement by piezoelectric effect after application of an electric potential to the conductive AFM probe translates into a likewise variation of the probe oscillation amplitude, while the related electrostatic forces mainly affect the oscillator resonant frequency, and cantilever bending is limited due to their high stiffness. Our non-contact CE-FM-PFM method is shown to reduce electrostatic force contributions as compared to contact-PFM modes. Converse piezoelectric effect mapping is demonstrated on poly(vinylidenefluoride) nanofibers obtained by electrospinning.
2020
Labardi, M.; Magnani, A.; Capaccioli, S.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1019479
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact