We prove a new smoothing type property for solutions of the 1d quintic Schrödinger equation. As a consequence, we prove that a family of natural Gaussian measures are quasi-invariant under the flow of this equation. In the defocusing case, we prove global in time quasi-invariance while in the focusing case we only get local in time quasi-invariance because of a blow-up obstruction. Our results extend as well to generic odd power nonlinearities.
Transport of Gaussian measures by the flow of the nonlinear Schrödinger equation
Visciglia N.
2020-01-01
Abstract
We prove a new smoothing type property for solutions of the 1d quintic Schrödinger equation. As a consequence, we prove that a family of natural Gaussian measures are quasi-invariant under the flow of this equation. In the defocusing case, we prove global in time quasi-invariance while in the focusing case we only get local in time quasi-invariance because of a blow-up obstruction. Our results extend as well to generic odd power nonlinearities.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
MathAnnalenPTV.pdf
non disponibili
Descrizione: lavoro su rivista
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - accesso privato/ristretto
Dimensione
468.79 kB
Formato
Adobe PDF
|
468.79 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
MathAnnpostprint.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
458.02 kB
Formato
Adobe PDF
|
458.02 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


