We prove a new smoothing type property for solutions of the 1d quintic Schrödinger equation. As a consequence, we prove that a family of natural Gaussian measures are quasi-invariant under the flow of this equation. In the defocusing case, we prove global in time quasi-invariance while in the focusing case we only get local in time quasi-invariance because of a blow-up obstruction. Our results extend as well to generic odd power nonlinearities.

Transport of Gaussian measures by the flow of the nonlinear Schrödinger equation

Visciglia N.
2020-01-01

Abstract

We prove a new smoothing type property for solutions of the 1d quintic Schrödinger equation. As a consequence, we prove that a family of natural Gaussian measures are quasi-invariant under the flow of this equation. In the defocusing case, we prove global in time quasi-invariance while in the focusing case we only get local in time quasi-invariance because of a blow-up obstruction. Our results extend as well to generic odd power nonlinearities.
2020
Planchon, F.; Tzvetkov, N.; Visciglia, N.
File in questo prodotto:
File Dimensione Formato  
MathAnnalenPTV.pdf

non disponibili

Descrizione: lavoro su rivista
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 468.79 kB
Formato Adobe PDF
468.79 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
MathAnnpostprint.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 458.02 kB
Formato Adobe PDF
458.02 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1022814
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 10
social impact