We consider shape optimization problems for general integral functionals of the calculus of variations, defined on a domain $Omega$ that varies over all subdomains of a given bounded domain $D$ of ${f R}^d$. We show in a rather elementary way the existence of a solution that is in general a quasi open set. Under very mild conditions we show that the optimal domain is actually open and with finite perimeter. Some counterexamples show that in general this does not occur.

Optimal shapes for general integral functionals

Giuseppe Buttazzo
;
Harish Shrivastava
2020-01-01

Abstract

We consider shape optimization problems for general integral functionals of the calculus of variations, defined on a domain $Omega$ that varies over all subdomains of a given bounded domain $D$ of ${f R}^d$. We show in a rather elementary way the existence of a solution that is in general a quasi open set. Under very mild conditions we show that the optimal domain is actually open and with finite perimeter. Some counterexamples show that in general this does not occur.
2020
Buttazzo, Giuseppe; Shrivastava, Harish
File in questo prodotto:
File Dimensione Formato  
AHL_2020__3__261_0.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 529.02 kB
Formato Adobe PDF
529.02 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1022906
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact