The reaction of N-(phosphonomethyl)piperidine and N,N′- bis(phosphonomethyl)bipiperidine with zirconium(IV) in hydrofluoric acid media led to the preparation of two new zirconium fluoride phosphonate derivatives with 1D and 2D structure, respectively. Their structures were solved ab initio from laboratory powder X-ray diffraction (PXRD) data. The monophosphonate derivative, with formula ZrF2(HF)(O3PCH2NC 5H10), has a 1D structure (triclinic, space group P1̄, a = 6.6484(3) Å, b = 7.1396(3) Å, c = 12.2320(6) Å, α = 77.932(4)°, β = 87.031(6)°, γ = 78.953(5)°, V = 557.22(4) Å3, and Z = 2) made of inorganic chains constituted from the connection of zirconium octahedra and phosphorus tetrahedra with the piperidine groups bonded on their external part. The diphosphonate derivative, with formula Zr2F4(HF)2(O3PCH 2)NC10H18N(CH2PO3), has a 2D structure (triclinic, space group P1̄, a = 6.6243(3) Å, b = 7.2472(4) Å, c = 12.2550(7) Å, α = 102.879(4)°, β = 100.29(1)°, γ = 101.287(7)°, V = 547.03(4) Å3, and Z = 1) composed of the packing of covalent layers whose structure may be ideally obtained by the joining of adjacent chains of the 1D compound. In these hybrid layers, inorganic regions made of the connectivity of zirconium octahedra and phosphorus tetrahedra alternate with organic regions represented by the bipiperidine moieties. A section dedicated to vibrational spectroscopy analysis is also included, mainly devoted to clarify some issues not easily deducible on the basis of PXRD data and to describe the fluorine environment inside zirconium phosphonate structures. © 2011 American Chemical Society.

New hybrid zirconium aminophosphonates containing piperidine and bipiperidine groups

Taddei M.
Primo
;
2011-01-01

Abstract

The reaction of N-(phosphonomethyl)piperidine and N,N′- bis(phosphonomethyl)bipiperidine with zirconium(IV) in hydrofluoric acid media led to the preparation of two new zirconium fluoride phosphonate derivatives with 1D and 2D structure, respectively. Their structures were solved ab initio from laboratory powder X-ray diffraction (PXRD) data. The monophosphonate derivative, with formula ZrF2(HF)(O3PCH2NC 5H10), has a 1D structure (triclinic, space group P1̄, a = 6.6484(3) Å, b = 7.1396(3) Å, c = 12.2320(6) Å, α = 77.932(4)°, β = 87.031(6)°, γ = 78.953(5)°, V = 557.22(4) Å3, and Z = 2) made of inorganic chains constituted from the connection of zirconium octahedra and phosphorus tetrahedra with the piperidine groups bonded on their external part. The diphosphonate derivative, with formula Zr2F4(HF)2(O3PCH 2)NC10H18N(CH2PO3), has a 2D structure (triclinic, space group P1̄, a = 6.6243(3) Å, b = 7.2472(4) Å, c = 12.2550(7) Å, α = 102.879(4)°, β = 100.29(1)°, γ = 101.287(7)°, V = 547.03(4) Å3, and Z = 1) composed of the packing of covalent layers whose structure may be ideally obtained by the joining of adjacent chains of the 1D compound. In these hybrid layers, inorganic regions made of the connectivity of zirconium octahedra and phosphorus tetrahedra alternate with organic regions represented by the bipiperidine moieties. A section dedicated to vibrational spectroscopy analysis is also included, mainly devoted to clarify some issues not easily deducible on the basis of PXRD data and to describe the fluorine environment inside zirconium phosphonate structures. © 2011 American Chemical Society.
2011
Taddei, M.; Costantino, F.; Manuali, V.; Vivani, R.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1024468
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact