Friedreich ataxia is an autosomal recessive neurodegenerative disease associated with a high diabetes prevalence. No treatment is available to prevent or delay disease progression. Friedreich ataxia is caused by intronic GAA trinucleotide repeat expansions in the frataxin-encoding FXN gene that reduce frataxin expression, impair iron-sulfur cluster biogenesis, cause oxidative stress, and result in mitochondrial dysfunction and apoptosis. Here we examined the metabolic, neuroprotective and frataxin-inducing effects of glucagon-like-peptide 1 (GLP-1) analogs in in vivo and in vitro models and in Friedreich ataxia patients. The GLP-1 analog exenatide improved glucose homeostasis of frataxin-deficient mice through enhanced insulin content and secretion in pancreatic β-cells. Exenatide induced frataxin and iron-sulfur cluster-containing proteins in β-cells and brain, and was protective to sensory neurons in dorsal root ganglia. GLP-1 analogs also induced frataxin expression, reduced oxidative stress and improved mitochondrial function in Friedreich ataxia patients' induced pluripotent stem cell-derived β-cells and sensory neurons. The frataxin-inducing effect of exenatide was confirmed in a pilot trial in Friedreich ataxia patients, showing modest frataxin induction in platelets over a 5-week treatment course. Taken together, GLP-1 analogs improve mitochondrial function in frataxin-deficient cells and induce frataxin expression. Our findings identify incretin receptors as a therapeutic target in Friedreich ataxia.

Exenatide induces frataxin expression and improves mitochondrial function in Friedreich ataxia

Marselli, Lorella;Marchetti, Piero;
2019-01-01

Abstract

Friedreich ataxia is an autosomal recessive neurodegenerative disease associated with a high diabetes prevalence. No treatment is available to prevent or delay disease progression. Friedreich ataxia is caused by intronic GAA trinucleotide repeat expansions in the frataxin-encoding FXN gene that reduce frataxin expression, impair iron-sulfur cluster biogenesis, cause oxidative stress, and result in mitochondrial dysfunction and apoptosis. Here we examined the metabolic, neuroprotective and frataxin-inducing effects of glucagon-like-peptide 1 (GLP-1) analogs in in vivo and in vitro models and in Friedreich ataxia patients. The GLP-1 analog exenatide improved glucose homeostasis of frataxin-deficient mice through enhanced insulin content and secretion in pancreatic β-cells. Exenatide induced frataxin and iron-sulfur cluster-containing proteins in β-cells and brain, and was protective to sensory neurons in dorsal root ganglia. GLP-1 analogs also induced frataxin expression, reduced oxidative stress and improved mitochondrial function in Friedreich ataxia patients' induced pluripotent stem cell-derived β-cells and sensory neurons. The frataxin-inducing effect of exenatide was confirmed in a pilot trial in Friedreich ataxia patients, showing modest frataxin induction in platelets over a 5-week treatment course. Taken together, GLP-1 analogs improve mitochondrial function in frataxin-deficient cells and induce frataxin expression. Our findings identify incretin receptors as a therapeutic target in Friedreich ataxia.
2019
Igoillo-Esteve, Mariana; Oliveira, Ana F; Cosentino, Cristina; Fantuzzi, Federica; Demarez, Céline; Toivonen, Sanna; Hu, Amélie; Chintawar, Satyan; Lopes, Miguel; Pachera, Nathalie; Cai, Ying; Abdulkarim, Baroj; Rai, Myriam; Marselli, Lorella; Marchetti, Piero; Tariq, Mohammad; Jonas, Jean-Christophe; Boscolo, Marina; Pandolfo, Massimo; Eizirik, Décio L; Cnop, Miriam
File in questo prodotto:
File Dimensione Formato  
MarchettiPiero_1025889.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 17.61 MB
Formato Adobe PDF
17.61 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1025889
Citazioni
  • ???jsp.display-item.citation.pmc??? 26
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 32
social impact