Manufacturing defects that do not affect the functional operation of low power integrated circuits (ICs) can nevertheless impact their power saving capability. We show that stuck-ON faults on the power switches and resistive bridges between the power networks can impair the power saving capability of power-gating designs. For quantifying the impact of such faults on the power savings of power-gating designs, we propose a diagnosis technique that targets bridges between the power networks. The proposed technique is based on the static power analysis of a power-gating design in stand-by mode and it utilizes a novel on-chip signature generation unit, which is sensitive to the voltage level between power rails, the measurements of which are processed off-line for the diagnosis of bridges that can adversely affect power savings. We explore, through SPICE simulation of the largest IWLS'05 benchmarks synthesized using a 32 nm CMOS technology, the tradeoffs achieved by the proposed technique between diagnosis accuracy and area cost and we evaluate its robustness against process variation. The proposed technique achieves a diagnosis resolution that is higher than 98.6% and 97.9% for bridges of R 10 M (weak bridges) and bridges of R 10 M (strong bridges), respectively, and a diagnosis accuracy higher than 94.5% for all the examined defects. The area overhead is small and scalable: it is found to be 1.8% and 0.3% for designs with 27 K and 157 K gate equivalents, respectively.

Leakage current analysis for diagnosis of bridge defects in power-gating designs

Rossi D.;
2018-01-01

Abstract

Manufacturing defects that do not affect the functional operation of low power integrated circuits (ICs) can nevertheless impact their power saving capability. We show that stuck-ON faults on the power switches and resistive bridges between the power networks can impair the power saving capability of power-gating designs. For quantifying the impact of such faults on the power savings of power-gating designs, we propose a diagnosis technique that targets bridges between the power networks. The proposed technique is based on the static power analysis of a power-gating design in stand-by mode and it utilizes a novel on-chip signature generation unit, which is sensitive to the voltage level between power rails, the measurements of which are processed off-line for the diagnosis of bridges that can adversely affect power savings. We explore, through SPICE simulation of the largest IWLS'05 benchmarks synthesized using a 32 nm CMOS technology, the tradeoffs achieved by the proposed technique between diagnosis accuracy and area cost and we evaluate its robustness against process variation. The proposed technique achieves a diagnosis resolution that is higher than 98.6% and 97.9% for bridges of R 10 M (weak bridges) and bridges of R 10 M (strong bridges), respectively, and a diagnosis accuracy higher than 94.5% for all the examined defects. The area overhead is small and scalable: it is found to be 1.8% and 0.3% for designs with 27 K and 157 K gate equivalents, respectively.
2018
Tenentes, V.; Rossi, D.; Khursheed, S.; Al-Hashimi, B. M.; Chakrabarty, K.
File in questo prodotto:
File Dimensione Formato  
Accepted_Manuscript_Tenentes.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.46 MB
Formato Adobe PDF
3.46 MB Adobe PDF Visualizza/Apri
07984829.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.28 MB
Formato Adobe PDF
3.28 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1025913
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact