Low power fault tolerance design techniques trade reliability to reduce the area cost and the power overhead of integrated circuits by protecting only a subset of their workload or their most vulnerable parts. However, in the presence of faults not all workloads are equally susceptible to errors. In this paper, we present a low power fault tolerance design technique that selects and protects the most susceptible workload. We propose to rank the workload susceptibility as the likelihood of any error to bypass the logic masking of the circuit and propagate to its outputs. The susceptible workload is protected by a partial Triple Modular Redundancy (TMR) scheme. We evaluate the proposed technique on timing-independent and timing-dependent errors induced by permanent and transient faults. In comparison with unranked selective fault tolerance approach, we demonstrate a) a similar error coverage with a 39.7% average reduction of the area overhead or b) a 86.9% average error coverage improvement for a similar area overhead. For the same area overhead case, we observe an error coverage improvement of 53.1% and 53.5% against permanent stuck-at and transition faults, respectively, and an average error coverage improvement of 151.8% and 89.0% against timing-dependent and timing-independent transient faults, respectively. Compared to TMR, the proposed technique achieves an area and power overhead reduction of 145.8% to 182.0%.

Susceptible Workload Evaluation and Protection using Selective Fault Tolerance

Rossi D.;
2017-01-01

Abstract

Low power fault tolerance design techniques trade reliability to reduce the area cost and the power overhead of integrated circuits by protecting only a subset of their workload or their most vulnerable parts. However, in the presence of faults not all workloads are equally susceptible to errors. In this paper, we present a low power fault tolerance design technique that selects and protects the most susceptible workload. We propose to rank the workload susceptibility as the likelihood of any error to bypass the logic masking of the circuit and propagate to its outputs. The susceptible workload is protected by a partial Triple Modular Redundancy (TMR) scheme. We evaluate the proposed technique on timing-independent and timing-dependent errors induced by permanent and transient faults. In comparison with unranked selective fault tolerance approach, we demonstrate a) a similar error coverage with a 39.7% average reduction of the area overhead or b) a 86.9% average error coverage improvement for a similar area overhead. For the same area overhead case, we observe an error coverage improvement of 53.1% and 53.5% against permanent stuck-at and transition faults, respectively, and an average error coverage improvement of 151.8% and 89.0% against timing-dependent and timing-independent transient faults, respectively. Compared to TMR, the proposed technique achieves an area and power overhead reduction of 145.8% to 182.0%.
2017
Gutierrez, M. D.; Tenentes, V.; Rossi, D.; Kazmierski, T. J.
File in questo prodotto:
File Dimensione Formato  
Gutierrez2017.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 1.69 MB
Formato Adobe PDF
1.69 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1025916
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact