Searches for the chiral magnetic effect (CME) using charge-dependent azimuthal correlations with respect to event planes are presented in PbPb collisions at 5.02 TeV and pPb collisions at 5.02 and 8.16 TeV, with the CMS experiment at the LHC. The azimuthal correlations with respect to the second- and third-order event planes are explored as a function of pseudorapidity, transverse momentum, and event multiplicity, which provides new insights into the underlying background correlations. By employing an event-shape engineering technique, a linear dependence of charge-dependent correlations on the second-order anisotropy flow (nu(2)) is observed, and the upper limits on the nu(2)-independent fraction, which is directly related to the CME signal, are obtained at 95% confidence level for both pPb and PbPb collisions. These results provide strong constraints on the search for the chiral magnetic effect at LHC energies, and establish new guidelines for searches in future experiments.

Search for the chiral magnetic effect at the LHC with the CMS experiment

Bianchini, L.;Ciocci, M. A.;Fedi, G.;Grippo, M. T.;Messineo, A.;Rizzi, A.;Tonelli, G.;
2019-01-01

Abstract

Searches for the chiral magnetic effect (CME) using charge-dependent azimuthal correlations with respect to event planes are presented in PbPb collisions at 5.02 TeV and pPb collisions at 5.02 and 8.16 TeV, with the CMS experiment at the LHC. The azimuthal correlations with respect to the second- and third-order event planes are explored as a function of pseudorapidity, transverse momentum, and event multiplicity, which provides new insights into the underlying background correlations. By employing an event-shape engineering technique, a linear dependence of charge-dependent correlations on the second-order anisotropy flow (nu(2)) is observed, and the upper limits on the nu(2)-independent fraction, which is directly related to the CME signal, are obtained at 95% confidence level for both pPb and PbPb collisions. These results provide strong constraints on the search for the chiral magnetic effect at LHC energies, and establish new guidelines for searches in future experiments.
2019
Tu, Zhoudunming; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Dragicevic, M.; Eroe, J.; Del Valle...espandi
File in questo prodotto:
File Dimensione Formato  
NuclPhysA_982.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 177.21 kB
Formato Adobe PDF
177.21 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1027626
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact