Carbonyl reductase 1 (CBR1) is an NADP-dependent enzyme that exerts a detoxifying role, which catalyses the transformation of carbonyl-containing compounds. The ability of CBR1 to act on adducts between glutathione and lipid peroxidation derived aldehydes has recently been reported. In the present study, exploiting mass spectrometry and fluorescence spectroscopy, evidence is shown that CBR1 is able to retain NADP(H) at the active site even after extensive dialysis, and that this retention may also occur when the enzyme is performing catalysis. This property, together with the multi-substrate specificity of CBR1 in both directions of red/ox reactions, generates inter-conversion red/ox cycles. This particular feature of CBR1, in the case of the transformation of 3-glutathionyl, 4-hydroxynonanal (GSHNE), which is a key substrate of the enzyme in detoxification, supports the disproportionation reaction of GSHNE without any apparent exchange of the cofactor with the solution. The importance of the cofactor as a prosthetic group for other dehydrogenases exerting a detoxification role is discussed.

Dehydrogenase/reductase activity of human carbonyl reductase 1 with NADP(H) acting as a prosthetic group

Moschini R
Co-primo
;
Cappiello M;Balestri F;Mura U;Del-Corso A
2020-01-01

Abstract

Carbonyl reductase 1 (CBR1) is an NADP-dependent enzyme that exerts a detoxifying role, which catalyses the transformation of carbonyl-containing compounds. The ability of CBR1 to act on adducts between glutathione and lipid peroxidation derived aldehydes has recently been reported. In the present study, exploiting mass spectrometry and fluorescence spectroscopy, evidence is shown that CBR1 is able to retain NADP(H) at the active site even after extensive dialysis, and that this retention may also occur when the enzyme is performing catalysis. This property, together with the multi-substrate specificity of CBR1 in both directions of red/ox reactions, generates inter-conversion red/ox cycles. This particular feature of CBR1, in the case of the transformation of 3-glutathionyl, 4-hydroxynonanal (GSHNE), which is a key substrate of the enzyme in detoxification, supports the disproportionation reaction of GSHNE without any apparent exchange of the cofactor with the solution. The importance of the cofactor as a prosthetic group for other dehydrogenases exerting a detoxification role is discussed.
2020
Barracco, V; Moschini, R; Renzone, G; Cappiello, M; Balestri, F; Scaloni, A; Mura, U; Del-Corso, A
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0006291X19322168-main.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 689.59 kB
Formato Adobe PDF
689.59 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1028241
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact