After almost 20 years of absence from research agendas, interest in the vertical axis wind turbine (VAWT) technology is presently increasing again, after the research stalled in the mid 90's in favor of horizontal axis wind turbines (HAWTs). However, due to the lack of research in past years, there are a significantly lower number of design and certification tools available, many of which are underdeveloped if compared to the corresponding tools for HAWTs. To partially fulfill this gap, a structural finite element analysis (FEA) model, based on the Open Source multiphysics library PROJECT::CHRONO, was recently integrated with the lifting line free vortex wake (LLFVW) method inside the Open Source wind turbine simulation code QBlade and validated against numerical and experimental data of the SANDIA 34 m rotor. In this work, some details about the newly implemented nonlinear structural model and its coupling to the aerodynamic solver are first given. Then, in a continuous effort to assess its accuracy, the code capabilities were here tested on a small-scale, fast-spinning (up to 450 rpm) VAWT. The study turbine is a helix shaped, 1 kW Darrieus turbine, for which other numerical analyses were available from a previous study, including the results coming from both a one-dimensional beam element model and a more sophisticated shell element model. The resulting data represented an excellent basis for comparison and validation of the new aero-elastic coupling in QBlade. Based on the structural and aerodynamic data of the study turbine, an aero-elastic model was then constructed. A purely aerodynamic comparison to experimental data and a blade element momentum (BEM) simulation represented the benchmark for QBlade aerodynamic performance. Then, a purely structural analysis was carried out and compared to the numerical results from the former. After the code validation, an aero-elastically coupled simulation of a rotor self-start has been performed to demonstrate the capabilities of the newly developed model to predict the highly nonlinear transient aerodynamic and structural rotor response.

Benchmark of a Novel Aero-Elastic Simulation Code for Small Scale VAWT Analysis

Ferrari L.
2019-01-01

Abstract

After almost 20 years of absence from research agendas, interest in the vertical axis wind turbine (VAWT) technology is presently increasing again, after the research stalled in the mid 90's in favor of horizontal axis wind turbines (HAWTs). However, due to the lack of research in past years, there are a significantly lower number of design and certification tools available, many of which are underdeveloped if compared to the corresponding tools for HAWTs. To partially fulfill this gap, a structural finite element analysis (FEA) model, based on the Open Source multiphysics library PROJECT::CHRONO, was recently integrated with the lifting line free vortex wake (LLFVW) method inside the Open Source wind turbine simulation code QBlade and validated against numerical and experimental data of the SANDIA 34 m rotor. In this work, some details about the newly implemented nonlinear structural model and its coupling to the aerodynamic solver are first given. Then, in a continuous effort to assess its accuracy, the code capabilities were here tested on a small-scale, fast-spinning (up to 450 rpm) VAWT. The study turbine is a helix shaped, 1 kW Darrieus turbine, for which other numerical analyses were available from a previous study, including the results coming from both a one-dimensional beam element model and a more sophisticated shell element model. The resulting data represented an excellent basis for comparison and validation of the new aero-elastic coupling in QBlade. Based on the structural and aerodynamic data of the study turbine, an aero-elastic model was then constructed. A purely aerodynamic comparison to experimental data and a blade element momentum (BEM) simulation represented the benchmark for QBlade aerodynamic performance. Then, a purely structural analysis was carried out and compared to the numerical results from the former. After the code validation, an aero-elastically coupled simulation of a rotor self-start has been performed to demonstrate the capabilities of the newly developed model to predict the highly nonlinear transient aerodynamic and structural rotor response.
2019
Marten, D.; Lennie, M.; Pechlivanoglou, G.; Paschereit, C. O.; Bianchini, A.; Ferrara, G.; Ferrari, L.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1028619
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact