We deduce a non-linear continuum model of graphene for the case of finite out-of-plane displacements and small in-plane deformations. On assuming that the lattice interactions are governed by the Brenner's REBO potential of 2nd generation and that self-stress is present, we introduce discrete strain measures accounting for up-to-the-third neighbor interactions. The continuum limit turns out to depend on an average (macroscopic) displacement field and a relative shift displacement of the two Bravais lattices that give rise to the hexagonal periodicity. On minimizing the energy with respect to the shift variable, we formally determine a continuum model of Föppl–von Kármán type, whose constitutive coefficients are given in terms of the atomistic interactions.

An atomistic-based Föppl–von Kármán model for graphene

Paroni R.
2019-01-01

Abstract

We deduce a non-linear continuum model of graphene for the case of finite out-of-plane displacements and small in-plane deformations. On assuming that the lattice interactions are governed by the Brenner's REBO potential of 2nd generation and that self-stress is present, we introduce discrete strain measures accounting for up-to-the-third neighbor interactions. The continuum limit turns out to depend on an average (macroscopic) displacement field and a relative shift displacement of the two Bravais lattices that give rise to the hexagonal periodicity. On minimizing the energy with respect to the shift variable, we formally determine a continuum model of Föppl–von Kármán type, whose constitutive coefficients are given in terms of the atomistic interactions.
2019
Davini, C.; Favata, A.; Paroni, R.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1030231
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact