We study a sub-Finsler geometric problem on the free nilpotent group of rank 2 and step 3. Such a group is also called the Cartan group and has a natural structure of Carnot group, which we metrize by considering the l∞ norm on its first layer. We adopt the point of view of time-optimal control theory. We characterize extremal curves via the Pontryagin maximum principle. We describe abnormal and singular arcs and construct the bang-bang flow.

A Sub-Finsler Problem on the Cartan Group

Le Donne E.;
2019-01-01

Abstract

We study a sub-Finsler geometric problem on the free nilpotent group of rank 2 and step 3. Such a group is also called the Cartan group and has a natural structure of Carnot group, which we metrize by considering the l∞ norm on its first layer. We adopt the point of view of time-optimal control theory. We characterize extremal curves via the Pontryagin maximum principle. We describe abnormal and singular arcs and construct the bang-bang flow.
2019
Ardentov, A. A.; Le Donne, E.; Sachkov, Y. L.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1030581
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact