In this paper we define a notion of calibration for an equivalent approach to the classical Steiner problem in a covering space setting and we give some explicit examples. Moreover we introduce the notion of calibration in families: the idea is to divide the set of competitors in a suitable way, defining an appropriate (and weaker) notion of calibration. Then, calibrating the candidate minimizers in each family and comparing their perimeter, it is possible to find the minimizers of the minimization problem. Thanks to this procedure we prove the minimality of the Steiner configurations spanning the vertices of a regular hexagon and of a regular pentagon.
Calibrations for minimal networks in a covering space setting
Alessandra Pluda
2020-01-01
Abstract
In this paper we define a notion of calibration for an equivalent approach to the classical Steiner problem in a covering space setting and we give some explicit examples. Moreover we introduce the notion of calibration in families: the idea is to divide the set of competitors in a suitable way, defining an appropriate (and weaker) notion of calibration. Then, calibrating the candidate minimizers in each family and comparing their perimeter, it is possible to find the minimizers of the minimization problem. Thanks to this procedure we prove the minimality of the Steiner configurations spanning the vertices of a regular hexagon and of a regular pentagon.File | Dimensione | Formato | |
---|---|---|---|
cali_c_p.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
1.2 MB
Formato
Adobe PDF
|
1.2 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.