Salicylic acid (SA) is involved in several responses associated with plant development and defence against biotic and abiotic stress, but its role on photosynthetic regulation is still under debate. This work investigated energy conversion processes and related gene expression in the brachytic mutant of sunflower lingering hope (linho). This mutant was characterized by a higher ratio between the free SA form and its conjugate form SA O-β-D-glucoside (SAG) compared to wild type (WT), without significant changes in the endogenous level of abscisic acid and hydrogen peroxide. The mutant showed an inhibition of photosynthesis due to a combination of both stomatal and non-stomatal limitations, although the latter seemed to play a major role. The reduced carboxylation efficiency was associated with a down-regulation of the gene expression for both the large and small subunits of Rubisco and the Rubisco activase enzyme. Moreover, linho showed an alteration of photosystem II (PSII) functionality, with reduced PSII photochemistry, increased PSII excitation pressure and decreased thermal energy dissipation of excessive light energy. These responses were associated with a lower photosynthetic pigments concentration and a reduced expression of genes encoding for light-harvesting chlorophyll a/b binding proteins (i.e. HaLhcA), chlorophyll binding subunits of PSII proteins (i.e. HaPsbS and HaPsbX), phytoene synthase enzyme and a different expression level for genes related to PSII repair cycle, such as HaPsbA and HaPsbD. The concomitant stimulation of respiratory metabolism, suggests that linho activated a coordinate modulation of chloroplast and mitochondria activities to compensate the energy imbalance and regulate energy conversion processes.

Energy conversion processes and related gene expression in a sunflower mutant with altered salicylic acid metabolism

Fambrini M.;Mariotti L.
;
Picciarelli P.;Pugliesi C.
2020-01-01

Abstract

Salicylic acid (SA) is involved in several responses associated with plant development and defence against biotic and abiotic stress, but its role on photosynthetic regulation is still under debate. This work investigated energy conversion processes and related gene expression in the brachytic mutant of sunflower lingering hope (linho). This mutant was characterized by a higher ratio between the free SA form and its conjugate form SA O-β-D-glucoside (SAG) compared to wild type (WT), without significant changes in the endogenous level of abscisic acid and hydrogen peroxide. The mutant showed an inhibition of photosynthesis due to a combination of both stomatal and non-stomatal limitations, although the latter seemed to play a major role. The reduced carboxylation efficiency was associated with a down-regulation of the gene expression for both the large and small subunits of Rubisco and the Rubisco activase enzyme. Moreover, linho showed an alteration of photosystem II (PSII) functionality, with reduced PSII photochemistry, increased PSII excitation pressure and decreased thermal energy dissipation of excessive light energy. These responses were associated with a lower photosynthetic pigments concentration and a reduced expression of genes encoding for light-harvesting chlorophyll a/b binding proteins (i.e. HaLhcA), chlorophyll binding subunits of PSII proteins (i.e. HaPsbS and HaPsbX), phytoene synthase enzyme and a different expression level for genes related to PSII repair cycle, such as HaPsbA and HaPsbD. The concomitant stimulation of respiratory metabolism, suggests that linho activated a coordinate modulation of chloroplast and mitochondria activities to compensate the energy imbalance and regulate energy conversion processes.
2020
Scartazza, A.; Fambrini, M.; Mariotti, L.; Picciarelli, P.; Pugliesi, C.
File in questo prodotto:
File Dimensione Formato  
PLAPHY-D-19-01930.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 1.98 MB
Formato Adobe PDF
1.98 MB Adobe PDF Visualizza/Apri
Energy conversion processes.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 1.26 MB
Formato Adobe PDF
1.26 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1033518
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact