Moisture absorption degrades the mechanical properties of polymeric parts that are 3D-printed by fused filament fabrication (FFF). This limitation is particularly significant for short fiber-reinforced polymers because the mechanical enhancement obtained by the fiber reinforcement can be compromised by the plasticizing effect introduced by water absorption. Therefore, the present work investigates the effects of two different coatings, a UV cured acrylate resin and an acrylic varnish, on the moisture absorption of FFF 3D-printed samples consisting of polyamide reinforced by short carbon fibers. Water content (CI) and open porosity (OP) were estimated through water absorption tests in distilled water for 2, 24, and 168 h, and after reconditioning. The coating effects were evaluated by conducting tensile tests to compare the Young’s modulus, yield stress, and ultimate stress of the coated and uncoated specimens. The results demonstrated a significant reduction of CI and OP with both the acrylic and UV resin coatings, as well as considerable enhancements of these samples’ mechanical properties. Stress-strain curves evidenced a strain reduction after water immersion, which can be ascribed to a greater stability against different moisture conditions. These findings indicate the significant potential of the proposed coating processes to extend the use of FFF 3D-printed composite materials to a broader range of applications.

Two coatings that enhance mechanical properties of fused filament-fabricated carbon-fiber reinforced composites

Barone, S.;Neri, P.;Paoli, A.
Co-primo
;
Razionale, A. V.
Ultimo
;
Tamburrino, F.
Co-primo
2020-01-01

Abstract

Moisture absorption degrades the mechanical properties of polymeric parts that are 3D-printed by fused filament fabrication (FFF). This limitation is particularly significant for short fiber-reinforced polymers because the mechanical enhancement obtained by the fiber reinforcement can be compromised by the plasticizing effect introduced by water absorption. Therefore, the present work investigates the effects of two different coatings, a UV cured acrylate resin and an acrylic varnish, on the moisture absorption of FFF 3D-printed samples consisting of polyamide reinforced by short carbon fibers. Water content (CI) and open porosity (OP) were estimated through water absorption tests in distilled water for 2, 24, and 168 h, and after reconditioning. The coating effects were evaluated by conducting tensile tests to compare the Young’s modulus, yield stress, and ultimate stress of the coated and uncoated specimens. The results demonstrated a significant reduction of CI and OP with both the acrylic and UV resin coatings, as well as considerable enhancements of these samples’ mechanical properties. Stress-strain curves evidenced a strain reduction after water immersion, which can be ascribed to a greater stability against different moisture conditions. These findings indicate the significant potential of the proposed coating processes to extend the use of FFF 3D-printed composite materials to a broader range of applications.
2020
Barone, S.; Neri, P.; Orsi, S.; Paoli, A.; Razionale, A. V.; Tamburrino, F.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1034837
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 12
social impact