Denoting by S the sharp constant in the Sobolev inequality in W1,2 0 (B), being B the unit ball in ℝ, and denoting by Sh its approximation in a suitable finite element space, we show that Sh converges to S as h south east double arrow 0 with a polynomial rate of convergence. We provide both an upper and a lower bound on the rate of convergence, and present some numerical results.

Finite Element Approximation of Sobolev Constant

Pratelli Aldo
2011-01-01

Abstract

Denoting by S the sharp constant in the Sobolev inequality in W1,2 0 (B), being B the unit ball in ℝ, and denoting by Sh its approximation in a suitable finite element space, we show that Sh converges to S as h south east double arrow 0 with a polynomial rate of convergence. We provide both an upper and a lower bound on the rate of convergence, and present some numerical results.
2011
Antonietti, Paola; Pratelli, Aldo
File in questo prodotto:
File Dimensione Formato  
sobolev_art:10.1007/s00211-010-0347-y.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 622.07 kB
Formato Adobe PDF
622.07 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1037728
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact