By elementary geometric arguments, correlation inequalities for radially symmetric probability measures are proved in the plane. Precisely, it is shown that the correlation ratio for pairs of width-decreasing sets is minimized within the class of infinite strips. Since open convex sets which are symmetric with respect to the origin turn out to be width-decreasing sets, Pitt’s Gaussian correlation inequality (the two-dimensional case of the long-standing Gaussian correlation conjecture) is derived as a corollary, and it is in fact extended to a wide class of radially symmetric measures.
A Geometric Approach to Correlation Inequalities in the Plane
Pratelli A.
2014-01-01
Abstract
By elementary geometric arguments, correlation inequalities for radially symmetric probability measures are proved in the plane. Precisely, it is shown that the correlation ratio for pairs of width-decreasing sets is minimized within the class of infinite strips. Since open convex sets which are symmetric with respect to the origin turn out to be width-decreasing sets, Pitt’s Gaussian correlation inequality (the two-dimensional case of the long-standing Gaussian correlation conjecture) is derived as a corollary, and it is in fact extended to a wide class of radially symmetric measures.File in questo prodotto:
	
	
	
    
	
	
	
	
	
	
	
	
		
			
				
			
		
		
	
	
	
	
		
			Non ci sono file associati a questo prodotto.
		
		
	
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


