A quantitative sharp form of the classical isoperimetric inequality is proved, thus giving a positive answer to a conjecture by Hall. The proof is obtained through a symmetrization procedure, which allows to reduce oneself to the case of n-symmetric sets. And this case is in fact a simple one-dimensional problem.
The sharp quantitative isoperimetric inequality
A. PRATELLI
2008-01-01
Abstract
A quantitative sharp form of the classical isoperimetric inequality is proved, thus giving a positive answer to a conjecture by Hall. The proof is obtained through a symmetrization procedure, which allows to reduce oneself to the case of n-symmetric sets. And this case is in fact a simple one-dimensional problem.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Annals.pdf
solo utenti autorizzati
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
349.8 kB
Formato
Adobe PDF
|
349.8 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.