A quantitative sharp form of the classical isoperimetric inequality is proved, thus giving a positive answer to a conjecture by Hall. The proof is obtained through a symmetrization procedure, which allows to reduce oneself to the case of n-symmetric sets. And this case is in fact a simple one-dimensional problem.

The sharp quantitative isoperimetric inequality

A. PRATELLI
2008-01-01

Abstract

A quantitative sharp form of the classical isoperimetric inequality is proved, thus giving a positive answer to a conjecture by Hall. The proof is obtained through a symmetrization procedure, which allows to reduce oneself to the case of n-symmetric sets. And this case is in fact a simple one-dimensional problem.
2008
N, Fusco; F, Maggi; Pratelli, A.
File in questo prodotto:
File Dimensione Formato  
Annals.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 349.8 kB
Formato Adobe PDF
349.8 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1037776
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 237
  • ???jsp.display-item.citation.isi??? 234
social impact