In this paper we show that any increasing functional of the first k eigenvalues of the Dirichlet Laplacian admits a (quasi-)open minimizer among the subsets of R^N of unit measure. In particular, there exists such a minimizer which is bounded, where the bound depends on k and N, but not on the functional.
Existence of minimizers for spectral problems
Pratelli A.
2013-01-01
Abstract
In this paper we show that any increasing functional of the first k eigenvalues of the Dirichlet Laplacian admits a (quasi-)open minimizer among the subsets of R^N of unit measure. In particular, there exists such a minimizer which is bounded, where the bound depends on k and N, but not on the functional.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0021782413000160-main.pdf
solo utenti autorizzati
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
307.89 kB
Formato
Adobe PDF
|
307.89 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.