In this paper we show that any increasing functional of the first k eigenvalues of the Dirichlet Laplacian admits a (quasi-)open minimizer among the subsets of R^N of unit measure. In particular, there exists such a minimizer which is bounded, where the bound depends on k and N, but not on the functional.

Existence of minimizers for spectral problems

Pratelli A.
2013-01-01

Abstract

In this paper we show that any increasing functional of the first k eigenvalues of the Dirichlet Laplacian admits a (quasi-)open minimizer among the subsets of R^N of unit measure. In particular, there exists such a minimizer which is bounded, where the bound depends on k and N, but not on the functional.
2013
Mazzoleni, D.; Pratelli, A.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0021782413000160-main.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 307.89 kB
Formato Adobe PDF
307.89 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1037778
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 64
  • ???jsp.display-item.citation.isi??? 60
social impact