We prove that a large class of expanding maps of the unit interval with a $C^2$-regular indifferent fixed point in 0 and full increasing branches are global-local mixing. This class includes the standard Pomeau-Manneville maps $T(x) = x + x^{p+1}$ mod 1 ($p ge 1$), the Liverani-Saussol-Vaienti maps (with index $p ge 1$) and many generalizations thereof.

Pomeau-Manneville maps are global-local mixing

Claudio Bonanno
;
2021-01-01

Abstract

We prove that a large class of expanding maps of the unit interval with a $C^2$-regular indifferent fixed point in 0 and full increasing branches are global-local mixing. This class includes the standard Pomeau-Manneville maps $T(x) = x + x^{p+1}$ mod 1 ($p ge 1$), the Liverani-Saussol-Vaienti maps (with index $p ge 1$) and many generalizations thereof.
2021
Bonanno, Claudio; Lenci, Marco
File in questo prodotto:
File Dimensione Formato  
pm-arxiv-2.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 356 kB
Formato Adobe PDF
356 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1048744
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact