We prove that a large class of expanding maps of the unit interval with a $C^2$-regular indifferent fixed point in 0 and full increasing branches are global-local mixing. This class includes the standard Pomeau-Manneville maps $T(x) = x + x^{p+1}$ mod 1 ($p ge 1$), the Liverani-Saussol-Vaienti maps (with index $p ge 1$) and many generalizations thereof.
Pomeau-Manneville maps are global-local mixing
Claudio Bonanno
;
2021-01-01
Abstract
We prove that a large class of expanding maps of the unit interval with a $C^2$-regular indifferent fixed point in 0 and full increasing branches are global-local mixing. This class includes the standard Pomeau-Manneville maps $T(x) = x + x^{p+1}$ mod 1 ($p ge 1$), the Liverani-Saussol-Vaienti maps (with index $p ge 1$) and many generalizations thereof.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
pm-arxiv-2.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
356 kB
Formato
Adobe PDF
|
356 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.