Low levels of contamination by Bacillus cereus at the cheese farm is essential for reducing any opportunity for growth prior consumption. In this study, B. cereus distribution in a plant producing Protected Designation of Origin Taleggio cheese was investigated and the virulence potential of the isolates was evaluated. Seventy-four samples were collected from Food and Non Food Contact Surfaces (FCS, NFCS), saline curd, and Taleggio. The eleven isolates were identified, typified, and clustered. Strains were tested for the production of hemolysins, hemolysin BL (HBL), phosphatidylcholine-specific phospholipase C (PC-PLC), proteases, and biofilm, and for the presence of chromosomal toxin-encoding genes (sph, plcA, cytK, entFM, bcet, entS, nheA, nheB, nheC). B. cereus was detected on NFCS, FCS, and curd, but not in Taleggio. The isolates were grouped into six clusters, and all produced PC-PLC, hemolysins, and proteases, and most of them HBL (66.7%). All the clusters harbored the nheA, sph, plcA, entFM, and cytK genes, and some also nheB (83.3%), nheC (66.7%), bcet (50.0%), and entS (66.7%). All strains showed biofilm-forming ability. Our data reveal possible contamination of production plants and cheese curd by potentially virulent B. cereus, but bacterial absence in Taleggio highlights the efficacy of a proper management of the production phases in assuring consumer’s protection.
Identification and pathogenic potential of bacillus cereus strains isolated from a dairy processing plant producing pdo taleggio cheese
Mazzantini D.;Celandroni F.Penultimo
;Ghelardi E.
Ultimo
2020-01-01
Abstract
Low levels of contamination by Bacillus cereus at the cheese farm is essential for reducing any opportunity for growth prior consumption. In this study, B. cereus distribution in a plant producing Protected Designation of Origin Taleggio cheese was investigated and the virulence potential of the isolates was evaluated. Seventy-four samples were collected from Food and Non Food Contact Surfaces (FCS, NFCS), saline curd, and Taleggio. The eleven isolates were identified, typified, and clustered. Strains were tested for the production of hemolysins, hemolysin BL (HBL), phosphatidylcholine-specific phospholipase C (PC-PLC), proteases, and biofilm, and for the presence of chromosomal toxin-encoding genes (sph, plcA, cytK, entFM, bcet, entS, nheA, nheB, nheC). B. cereus was detected on NFCS, FCS, and curd, but not in Taleggio. The isolates were grouped into six clusters, and all produced PC-PLC, hemolysins, and proteases, and most of them HBL (66.7%). All the clusters harbored the nheA, sph, plcA, entFM, and cytK genes, and some also nheB (83.3%), nheC (66.7%), bcet (50.0%), and entS (66.7%). All strains showed biofilm-forming ability. Our data reveal possible contamination of production plants and cheese curd by potentially virulent B. cereus, but bacterial absence in Taleggio highlights the efficacy of a proper management of the production phases in assuring consumer’s protection.File | Dimensione | Formato | |
---|---|---|---|
microorganisms-08-00949.pdf
accesso aperto
Tipologia:
Versione finale editoriale
Licenza:
Creative commons
Dimensione
1.06 MB
Formato
Adobe PDF
|
1.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.