Low levels of contamination by Bacillus cereus at the cheese farm is essential for reducing any opportunity for growth prior consumption. In this study, B. cereus distribution in a plant producing Protected Designation of Origin Taleggio cheese was investigated and the virulence potential of the isolates was evaluated. Seventy-four samples were collected from Food and Non Food Contact Surfaces (FCS, NFCS), saline curd, and Taleggio. The eleven isolates were identified, typified, and clustered. Strains were tested for the production of hemolysins, hemolysin BL (HBL), phosphatidylcholine-specific phospholipase C (PC-PLC), proteases, and biofilm, and for the presence of chromosomal toxin-encoding genes (sph, plcA, cytK, entFM, bcet, entS, nheA, nheB, nheC). B. cereus was detected on NFCS, FCS, and curd, but not in Taleggio. The isolates were grouped into six clusters, and all produced PC-PLC, hemolysins, and proteases, and most of them HBL (66.7%). All the clusters harbored the nheA, sph, plcA, entFM, and cytK genes, and some also nheB (83.3%), nheC (66.7%), bcet (50.0%), and entS (66.7%). All strains showed biofilm-forming ability. Our data reveal possible contamination of production plants and cheese curd by potentially virulent B. cereus, but bacterial absence in Taleggio highlights the efficacy of a proper management of the production phases in assuring consumer’s protection.

Identification and pathogenic potential of bacillus cereus strains isolated from a dairy processing plant producing pdo taleggio cheese

Mazzantini D.;Celandroni F.
Penultimo
;
Ghelardi E.
Ultimo
2020-01-01

Abstract

Low levels of contamination by Bacillus cereus at the cheese farm is essential for reducing any opportunity for growth prior consumption. In this study, B. cereus distribution in a plant producing Protected Designation of Origin Taleggio cheese was investigated and the virulence potential of the isolates was evaluated. Seventy-four samples were collected from Food and Non Food Contact Surfaces (FCS, NFCS), saline curd, and Taleggio. The eleven isolates were identified, typified, and clustered. Strains were tested for the production of hemolysins, hemolysin BL (HBL), phosphatidylcholine-specific phospholipase C (PC-PLC), proteases, and biofilm, and for the presence of chromosomal toxin-encoding genes (sph, plcA, cytK, entFM, bcet, entS, nheA, nheB, nheC). B. cereus was detected on NFCS, FCS, and curd, but not in Taleggio. The isolates were grouped into six clusters, and all produced PC-PLC, hemolysins, and proteases, and most of them HBL (66.7%). All the clusters harbored the nheA, sph, plcA, entFM, and cytK genes, and some also nheB (83.3%), nheC (66.7%), bcet (50.0%), and entS (66.7%). All strains showed biofilm-forming ability. Our data reveal possible contamination of production plants and cheese curd by potentially virulent B. cereus, but bacterial absence in Taleggio highlights the efficacy of a proper management of the production phases in assuring consumer’s protection.
2020
Tirloni, E.; Stella, S.; Bernardi, C.; Mazzantini, D.; Celandroni, F.; Ghelardi, E.
File in questo prodotto:
File Dimensione Formato  
microorganisms-08-00949.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 1.06 MB
Formato Adobe PDF
1.06 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1049285
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 10
social impact