This study reports for the first time the use of waterborne polymers as host matrices for luminescent solar concentrators (LSCs). Notably, three types of waterborne polymer dispersions based either on acrylic acid esters and styrene (Polidisp® 7602), acrylic and methacrylic acid esters (Polidisp® 7788) or aliphatic polyester-based polyurethane (Tecfin P40) were selected as amorphous coatings over glass substrates. Water soluble Basic Yellow 40 (BY40) and Disperse Red 277 (DR277) were utilized as fluorophores and the derived thin polymer films (100 μm) were found homogeneous within the dye range of concentration investigated (0.3-2 wt. %). The optical efficiency determination (ηopt) evidenced LSCs performances close to those collected from benchmark polymethylmethacrylate (PMMA) thin films and Lumogen Red F350 (LR) with the same experimental setup. Noteworthy, maximum ηopt of 9.5 ± 0.2 were recorded for the Polidisp® 7602 matrix containing BY40, thus definitely supporting the waterborne polymer matrices for the development of high performance and cost-effective LSCs.

Luminescent solar concentrators from waterborne polymer coatings

Ruggeri G.;Pucci A.
Ultimo
2020-01-01

Abstract

This study reports for the first time the use of waterborne polymers as host matrices for luminescent solar concentrators (LSCs). Notably, three types of waterborne polymer dispersions based either on acrylic acid esters and styrene (Polidisp® 7602), acrylic and methacrylic acid esters (Polidisp® 7788) or aliphatic polyester-based polyurethane (Tecfin P40) were selected as amorphous coatings over glass substrates. Water soluble Basic Yellow 40 (BY40) and Disperse Red 277 (DR277) were utilized as fluorophores and the derived thin polymer films (100 μm) were found homogeneous within the dye range of concentration investigated (0.3-2 wt. %). The optical efficiency determination (ηopt) evidenced LSCs performances close to those collected from benchmark polymethylmethacrylate (PMMA) thin films and Lumogen Red F350 (LR) with the same experimental setup. Noteworthy, maximum ηopt of 9.5 ± 0.2 were recorded for the Polidisp® 7602 matrix containing BY40, thus definitely supporting the waterborne polymer matrices for the development of high performance and cost-effective LSCs.
2020
Minei, P.; Iasilli, G.; Ruggeri, G.; Pucci, A.
File in questo prodotto:
File Dimensione Formato  
Luminescent Solar Concentrators from Waterborne Polymer Coatings.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 818.44 kB
Formato Adobe PDF
818.44 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1049901
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact