Air ventilation rate plays a relevant role in maintaining adequate indoor air quality (IAQ) conditions in public buildings. In general, high ventilation rates ensure good indoor air quality but entail relevant energy consumption. Considering the necessity of balancing IAQ and energy consumption, a correlation between the number of occupants obtained from analysis of CO2 concentration variation is presented as a general element for controlling the operation of heating ventilation and air cooling (HVAC) systems. The specific CO2 exhalation rate is estimated using experimental data in some real conditions in university classrooms. A method for the definition of optimal values of air exchange rate is defined, highlighting that the obtained values are much lower than those defined in current technical standards with possibilities of relevant reduction of the total energy consumption.

Definition of Optimal Ventilation Rates for Balancing Comfort and Energy Use in Indoor Spaces Using CO2 Concentration Data

Franco, Alessandro
Primo
;
Schito, Eva
Secondo
2020-01-01

Abstract

Air ventilation rate plays a relevant role in maintaining adequate indoor air quality (IAQ) conditions in public buildings. In general, high ventilation rates ensure good indoor air quality but entail relevant energy consumption. Considering the necessity of balancing IAQ and energy consumption, a correlation between the number of occupants obtained from analysis of CO2 concentration variation is presented as a general element for controlling the operation of heating ventilation and air cooling (HVAC) systems. The specific CO2 exhalation rate is estimated using experimental data in some real conditions in university classrooms. A method for the definition of optimal values of air exchange rate is defined, highlighting that the obtained values are much lower than those defined in current technical standards with possibilities of relevant reduction of the total energy consumption.
2020
Franco, Alessandro; Schito, Eva
File in questo prodotto:
File Dimensione Formato  
buildings-10-00135_paper published official version.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 5.28 MB
Formato Adobe PDF
5.28 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1050146
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 40
social impact