The study of the ecological strategies adopted by seed plants to ensure their success in different environments is closely related to germination ecology. This implies a careful knowledge of ecophysiology of seeds and, therefore, also of interaction between plants and the complexity of external factors. In particular, the environmental conditions of the area where a plant grows and produces seeds represent the main factors that influence successful seedling establishment. The physical-chemical features of habitats, and therefore their heterogeneity, affect the behavior of seeds in different ways. In addition to the timing of seed production, they can induce or terminate dormancy and/or germination and influence the germination pattern of different seeds in the same plant and so the composition and dispersal of soil seed banks. Salinity is a major abiotic stress affecting growth and plant productivity worldwide, constituting one of the main topics of study in the field of plant physiology. Halophytes are the plants that have the availability to survive and develop in different types of saline habitats. In this chapter, we consider some examples to illustrate the main adaptive strategies used by the seeds of halophytes on ecophysiological perspectives to survive in habitats affected by high levels of salinity. The focus is on the species that live in the brackish or salt coastal areas of the Mediterranean Basin. On these environments, the salt stress may act synergistically with intense anthropic pressure, generating profound alterations in the ecosystem and threatening the survival of the plant species very sensitive to the effects of climate change also. The results show the main diverse strategies, such as dormancy cycling, seed heteromorphism, and recovery capacity, from saline shock, favoring the chances of seed survival. The interaction between temperature and salinity during germination was also discussed assessing its crucial role as an ecological strategy.

Seed Germination Strategies of Mediterranean Halophytes Under Saline Condition

Lombardi, Tiziana
Primo
;
Bedini, Stefano
Ultimo
2020-01-01

Abstract

The study of the ecological strategies adopted by seed plants to ensure their success in different environments is closely related to germination ecology. This implies a careful knowledge of ecophysiology of seeds and, therefore, also of interaction between plants and the complexity of external factors. In particular, the environmental conditions of the area where a plant grows and produces seeds represent the main factors that influence successful seedling establishment. The physical-chemical features of habitats, and therefore their heterogeneity, affect the behavior of seeds in different ways. In addition to the timing of seed production, they can induce or terminate dormancy and/or germination and influence the germination pattern of different seeds in the same plant and so the composition and dispersal of soil seed banks. Salinity is a major abiotic stress affecting growth and plant productivity worldwide, constituting one of the main topics of study in the field of plant physiology. Halophytes are the plants that have the availability to survive and develop in different types of saline habitats. In this chapter, we consider some examples to illustrate the main adaptive strategies used by the seeds of halophytes on ecophysiological perspectives to survive in habitats affected by high levels of salinity. The focus is on the species that live in the brackish or salt coastal areas of the Mediterranean Basin. On these environments, the salt stress may act synergistically with intense anthropic pressure, generating profound alterations in the ecosystem and threatening the survival of the plant species very sensitive to the effects of climate change also. The results show the main diverse strategies, such as dormancy cycling, seed heteromorphism, and recovery capacity, from saline shock, favoring the chances of seed survival. The interaction between temperature and salinity during germination was also discussed assessing its crucial role as an ecological strategy.
2020
Lombardi, Tiziana; Bedini, Stefano
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1055168
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact