This article presents a set of algorithms for the estimation of state of charge, specifically deployed for lithium-ion batteries. These algorithms are based on appropriate battery models. These models can be developed having different levels of accuracy, also including the possibility to correctly represent the hysteresis voltage behaviour of the selected lithium cells. In addition, different identification methods of the battery model parameters may also be considered, considering tabulated parameters, calibrated in previous tests, or online parametrization tools. State of charge is then evaluated using non-linear Kalman filter techniques. Effectiveness of identification methods, also with the performance offered by Kalman filter itself, has been accurately evaluated through experimental tests. To verify the robustness of the proposed algorithms, some disturbances were introduced and evaluation was also conducted at different state of charge initial conditions and sampling times.

State-of-charge estimation based on model-adaptive Kalman filters

Lutzemberger G.;
2021-01-01

Abstract

This article presents a set of algorithms for the estimation of state of charge, specifically deployed for lithium-ion batteries. These algorithms are based on appropriate battery models. These models can be developed having different levels of accuracy, also including the possibility to correctly represent the hysteresis voltage behaviour of the selected lithium cells. In addition, different identification methods of the battery model parameters may also be considered, considering tabulated parameters, calibrated in previous tests, or online parametrization tools. State of charge is then evaluated using non-linear Kalman filter techniques. Effectiveness of identification methods, also with the performance offered by Kalman filter itself, has been accurately evaluated through experimental tests. To verify the robustness of the proposed algorithms, some disturbances were introduced and evaluation was also conducted at different state of charge initial conditions and sampling times.
2021
Locorotondo, E.; Lutzemberger, G.; Pugi, L.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1056250
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? ND
social impact