The Translocator Protein 18 kDa (TSPO) has been discovered in 1977 as an alternative binding site for the benzodiazepine diazepam. It is an evolutionary well-conserved and tryptophan-rich 169-amino acids protein with five alpha helical transmembrane domains stretching the outer mitochondrial membrane, with the carboxyl-terminus in the cytosol and a short amino-terminus in the intermembrane space of mitochondrion. At this level, together with the voltage-dependent anion channel (VDAC) and the adenine nucleotide translocase (ANT), it forms the mitochondrial permeability transition pore (MPTP). TSPO expression is ubiquitary, with higher levels in steroid producing tissues; in the central nervous system, it is mainly expressed in glial cells and in neurons. TSPO is implicated in a variety of fundamental cellular processes including steroidogenesis, heme biosynthesis, mitochondrial respiration, mitochondrial membrane potential, cell proliferation and differentiation, cell life/death balance, oxidative stress. Altered TSPO expression has been found in some pathological conditions. In particular, high TSPO expression levels have been documented in cancer, neuroinflammation, and brain injury. Conversely, low TSPO expression levels have been evidenced in anxiety disorders. Therefore, TSPO is not only an interesting drug target for therapeutic purpose (anticonvulsant, anxiolytic, etc.), but also a valid diagnostic marker of related-diseases detectable by fluorescent or radiolabeled ligands. The aim of this report is to present an update of previous reviews dealing with the medicinal chemistry of TSPO and to highlight the most outstanding advances in the development of TSPO ligands as potential therapeutic or diagnostic tools, especially referring to the last five years.

An update into the medicinal chemistry of translocator protein (TSPO) ligands

Barresi E.
Co-primo
;
Costa B.;Da Pozzo E.;Baglini E.;Salerno S.;Da Settimo F.;Martini C.
Penultimo
;
Taliani S.
Ultimo
2021-01-01

Abstract

The Translocator Protein 18 kDa (TSPO) has been discovered in 1977 as an alternative binding site for the benzodiazepine diazepam. It is an evolutionary well-conserved and tryptophan-rich 169-amino acids protein with five alpha helical transmembrane domains stretching the outer mitochondrial membrane, with the carboxyl-terminus in the cytosol and a short amino-terminus in the intermembrane space of mitochondrion. At this level, together with the voltage-dependent anion channel (VDAC) and the adenine nucleotide translocase (ANT), it forms the mitochondrial permeability transition pore (MPTP). TSPO expression is ubiquitary, with higher levels in steroid producing tissues; in the central nervous system, it is mainly expressed in glial cells and in neurons. TSPO is implicated in a variety of fundamental cellular processes including steroidogenesis, heme biosynthesis, mitochondrial respiration, mitochondrial membrane potential, cell proliferation and differentiation, cell life/death balance, oxidative stress. Altered TSPO expression has been found in some pathological conditions. In particular, high TSPO expression levels have been documented in cancer, neuroinflammation, and brain injury. Conversely, low TSPO expression levels have been evidenced in anxiety disorders. Therefore, TSPO is not only an interesting drug target for therapeutic purpose (anticonvulsant, anxiolytic, etc.), but also a valid diagnostic marker of related-diseases detectable by fluorescent or radiolabeled ligands. The aim of this report is to present an update of previous reviews dealing with the medicinal chemistry of TSPO and to highlight the most outstanding advances in the development of TSPO ligands as potential therapeutic or diagnostic tools, especially referring to the last five years.
2021
Barresi, E.; Robello, M.; Costa, B.; Da Pozzo, E.; Baglini, E.; Salerno, S.; Da Settimo, F.; Martini, C.; Taliani, S.
File in questo prodotto:
File Dimensione Formato  
EuJ MedChem 2020.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.07 MB
Formato Adobe PDF
2.07 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1057816
Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 35
social impact