Several indole derivatives have been disclosed by our research groups that have been collaborating for nearly 25 years. The results of our investigations led to a variety of molecules binding selectively to different pharmacological targets, specifically the type A γ-aminobutyric acid (GABAA) chloride channel, the translocator protein (TSPO), the murine double minute 2 (MDM2) protein, the A2B adenosine receptor (A2B AR) and the Kelch-like ECH-associated protein 1 (Keap1). Herein, we describe how these works were conceived and carried out thanks to the versatility of indole nucleus to be exploited in the design and synthesis of drug-like molecules.
Exploiting the indole scaffold to design compounds binding to different pharmacological targets
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Taliani S.
;Da Settimo F.;Martini C.;
	
		
		
	
			2020-01-01
Abstract
Several indole derivatives have been disclosed by our research groups that have been collaborating for nearly 25 years. The results of our investigations led to a variety of molecules binding selectively to different pharmacological targets, specifically the type A γ-aminobutyric acid (GABAA) chloride channel, the translocator protein (TSPO), the murine double minute 2 (MDM2) protein, the A2B adenosine receptor (A2B AR) and the Kelch-like ECH-associated protein 1 (Keap1). Herein, we describe how these works were conceived and carried out thanks to the versatility of indole nucleus to be exploited in the design and synthesis of drug-like molecules.| File | Dimensione | Formato | |
|---|---|---|---|
| molecules-25-02331-v2.pdf accesso aperto 
											Descrizione: Exploiting the Indole Scaffold to Design Compounds Binding to Different Pharmacological Targets
										 
											Tipologia:
											Versione finale editoriale
										 
											Licenza:
											
											
												Creative commons
												
												
													
													 
													
												
												
											
										 
										Dimensione
										5.35 MB
									 
										Formato
										Adobe PDF
									 | 5.35 MB | Adobe PDF | Visualizza/Apri | 
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


