This paper tackles the challenge of predicting grasp failures in soft hands before they happen, by combining deep learning with a sensing strategy based on distributed Inertial Measurement Units. We propose two neural architectures, which we implemented and tested with an articulated soft hand-the Pisa/IIT SoftHand-and a continuously deformable soft hand-the RBO Hand. The first architecture (Classifier) implements a-posteriori detection of the failure event, serving as a test-bench to assess the possibility of extracting failure information from the discussed input signals. This network reaches up to 100% of accuracy within our experimental validation. Motivated by these results, we introduce a second architecture (Predictor), which is the main contribution of the paper. This network works on-line and takes as input a multidimensional continuum stream of raw signals coming from the Inertial Measurement Units. The network is trained to predict the occurrence in the near future of a failure event. The Predictor detects 100% of failures with both hands, with the detection happening on average 1.96 seconds before the actual failing occurs-leaving plenty of time to an hypothetical controller to react.

To grasp or not to grasp: An end-to-end deep-learning approach for predicting grasping failures in soft hands

Bianchi M.
2020-01-01

Abstract

This paper tackles the challenge of predicting grasp failures in soft hands before they happen, by combining deep learning with a sensing strategy based on distributed Inertial Measurement Units. We propose two neural architectures, which we implemented and tested with an articulated soft hand-the Pisa/IIT SoftHand-and a continuously deformable soft hand-the RBO Hand. The first architecture (Classifier) implements a-posteriori detection of the failure event, serving as a test-bench to assess the possibility of extracting failure information from the discussed input signals. This network reaches up to 100% of accuracy within our experimental validation. Motivated by these results, we introduce a second architecture (Predictor), which is the main contribution of the paper. This network works on-line and takes as input a multidimensional continuum stream of raw signals coming from the Inertial Measurement Units. The network is trained to predict the occurrence in the near future of a failure event. The Predictor detects 100% of failures with both hands, with the detection happening on average 1.96 seconds before the actual failing occurs-leaving plenty of time to an hypothetical controller to react.
2020
978-1-7281-6570-7
File in questo prodotto:
File Dimensione Formato  
paper_grasp_failure_prediction (4)_MB.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.73 MB
Formato Adobe PDF
1.73 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1059134
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 7
social impact