The sensory-motor architecture of human upper limb and hand is characterized by a complex inter-relation of multiple elements, such as ligaments, muscles, and joints. Nonetheless, humans are able to generate coordinated and meaningful motor actions to interact-and eventually explore-the external environment. Such a complexity reduction is usually studied within the framework of synergistic control, whose focus has been mostly limited on human grasping and manipulation. Little attention has been devoted to the spatio-temporal characterization of human upper limb kinematic strategies and how the purposeful exploitation of the environmental constraints shapes human execution of manipulative actions. In this chapter, we report results on the evidence of a synergistic control of human upper limb and during manipulation with the environment. We propose functional analysis to characterize main spatio-temporal coordinated patterns of arm joints. Furthermore, we study how the environment influences human grasping synergies. The effect of cutaneous impairment is also evaluated. Applications to the design and control of robotic and assistive devices are finally discussed.

Kineto-dynamic modeling of human upper limb for robotic manipulators and assistive applications

Averta G.;Bettelani G. C.;Bianchi M.
2020-01-01

Abstract

The sensory-motor architecture of human upper limb and hand is characterized by a complex inter-relation of multiple elements, such as ligaments, muscles, and joints. Nonetheless, humans are able to generate coordinated and meaningful motor actions to interact-and eventually explore-the external environment. Such a complexity reduction is usually studied within the framework of synergistic control, whose focus has been mostly limited on human grasping and manipulation. Little attention has been devoted to the spatio-temporal characterization of human upper limb kinematic strategies and how the purposeful exploitation of the environmental constraints shapes human execution of manipulative actions. In this chapter, we report results on the evidence of a synergistic control of human upper limb and during manipulation with the environment. We propose functional analysis to characterize main spatio-temporal coordinated patterns of arm joints. Furthermore, we study how the environment influences human grasping synergies. The effect of cutaneous impairment is also evaluated. Applications to the design and control of robotic and assistive devices are finally discussed.
2020
Averta, G.; Bettelani, G. C.; Santina, C. D.; Bianchi, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1059136
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact