We prove that the planar hexagonal honeycomb is asymptotically optimal for a large class of optimal partition problems, in which the cells are assumed to be convex, and the criterion is to minimize either the sum or the maximum among the energies of the cells, the cost being a shape functional which satisfies a few assumptions. They are: monotonicity under inclusions; homogeneity under dilations; a Faber-Krahn inequality for convex hexagons; a convexity-type inequality for the map which associates with every n ∈ ℕ the minimizers of F among convex n-gons with given area. In particular, our result allows us to obtain the honeycomb conjecture for the Cheeger constant and for the logarithmic capacity (still assuming the cells to be convex). Moreover, we show that, in order to get the conjecture also for the first Dirichlet eigenvalue of the Laplacian, it is sufficient to establish some facts about the behaviour of λ1 among convex pentagons, hexagons, and heptagons with prescribed area.
On the honeycomb conjecture for a class of minimal convex partitions
Velichkov B.;
2018-01-01
Abstract
We prove that the planar hexagonal honeycomb is asymptotically optimal for a large class of optimal partition problems, in which the cells are assumed to be convex, and the criterion is to minimize either the sum or the maximum among the energies of the cells, the cost being a shape functional which satisfies a few assumptions. They are: monotonicity under inclusions; homogeneity under dilations; a Faber-Krahn inequality for convex hexagons; a convexity-type inequality for the map which associates with every n ∈ ℕ the minimizers of F among convex n-gons with given area. In particular, our result allows us to obtain the honeycomb conjecture for the Cheeger constant and for the logarithmic capacity (still assuming the cells to be convex). Moreover, we show that, in order to get the conjecture also for the first Dirichlet eigenvalue of the Laplacian, it is sufficient to establish some facts about the behaviour of λ1 among convex pentagons, hexagons, and heptagons with prescribed area.File | Dimensione | Formato | |
---|---|---|---|
TransAMS Version of record.pdf
solo utenti autorizzati
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
375.37 kB
Formato
Adobe PDF
|
375.37 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
TransAMS preprint.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
328.8 kB
Formato
Adobe PDF
|
328.8 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.