The paper presents a phenomenological epidemiological model for the description and prediction of the time trends of COVID-19 deaths worldwide. A bimodal distribution function—defined as the mixture of two lognormal distributions—is assumed to model the time distribution of deaths in a country. The asymmetric lognormal distribution enables better data fitting with respect to symmetric distribution functions. Besides, the presence of a second mode allows the model to also describe second waves of the epidemic. For each country, the model has six parameters, which are determined by fitting the available data through a nonlinear least-squares procedure. The fitted curves can then be extrapolated to predict the future trends of the total and daily number of deaths. Results for the six continents and the World are obtained by summing those computed for the 210 countries in the Our World in Data (OWID) dataset. To assess the accuracy of predictions, a validation study is first conducted. Then, based on data available as of 30 September 2020, the future trends are extrapolated until the end of year 2020.

A bimodal lognormal distribution model for the prediction of COVID-19 deaths

Valvo P. S.
Writing – Original Draft Preparation
2020

Abstract

The paper presents a phenomenological epidemiological model for the description and prediction of the time trends of COVID-19 deaths worldwide. A bimodal distribution function—defined as the mixture of two lognormal distributions—is assumed to model the time distribution of deaths in a country. The asymmetric lognormal distribution enables better data fitting with respect to symmetric distribution functions. Besides, the presence of a second mode allows the model to also describe second waves of the epidemic. For each country, the model has six parameters, which are determined by fitting the available data through a nonlinear least-squares procedure. The fitted curves can then be extrapolated to predict the future trends of the total and daily number of deaths. Results for the six continents and the World are obtained by summing those computed for the 210 countries in the Our World in Data (OWID) dataset. To assess the accuracy of predictions, a validation study is first conducted. Then, based on data available as of 30 September 2020, the future trends are extrapolated until the end of year 2020.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/1063051
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 8
social impact