Pathogens can manipulate the phenotypic traits of their hosts and vectors, maximizing their own fitness. Among the phenotypic traits that can be modified, manipulating vector behavior represents one of the most fascinating facets. How pathogens infection affects behavioral traits of key insect vectors has been extensively investigated. Major examples include Plasmodium, Leishmania and Trypanosoma spp. manipulating the behavior of mosquitoes, sand flies and kissing bugs, respectively. However, research on how pathogens can modify tick behavior is patchy. This review focuses on current knowledge about the behavioral changes triggered by Anaplasma, Borrelia, Babesia, Bartonella, Rickettsia and tick-borne encephalitis virus (TBEV) infection in tick vectors, analyzing their potential adaptive significance. As a general trend, being infected by Borrelia and TBEV boosts tick mobility (both questing and walking activity). Borrelia and Anaplasma infection magnifies Ixodes desiccation resistance, triggering physiological changes (Borrelia: higher fat reserves; Anaplasma: synthesis of heat shock proteins). Anaplasma infection also improves cold resistance in infected ticks through synthesis of an antifreeze glycoprotein. Being infected by Anaplasma, Borrelia and Babesia leads to increased tick survival. Borrelia, Babesia and Bartonella infection facilitates blood engorgement. In the last section, current challenges for future studies are outlined.

Pathogens manipulating tick behavior—through a glass, darkly

Benelli G.
2020-01-01

Abstract

Pathogens can manipulate the phenotypic traits of their hosts and vectors, maximizing their own fitness. Among the phenotypic traits that can be modified, manipulating vector behavior represents one of the most fascinating facets. How pathogens infection affects behavioral traits of key insect vectors has been extensively investigated. Major examples include Plasmodium, Leishmania and Trypanosoma spp. manipulating the behavior of mosquitoes, sand flies and kissing bugs, respectively. However, research on how pathogens can modify tick behavior is patchy. This review focuses on current knowledge about the behavioral changes triggered by Anaplasma, Borrelia, Babesia, Bartonella, Rickettsia and tick-borne encephalitis virus (TBEV) infection in tick vectors, analyzing their potential adaptive significance. As a general trend, being infected by Borrelia and TBEV boosts tick mobility (both questing and walking activity). Borrelia and Anaplasma infection magnifies Ixodes desiccation resistance, triggering physiological changes (Borrelia: higher fat reserves; Anaplasma: synthesis of heat shock proteins). Anaplasma infection also improves cold resistance in infected ticks through synthesis of an antifreeze glycoprotein. Being infected by Anaplasma, Borrelia and Babesia leads to increased tick survival. Borrelia, Babesia and Bartonella infection facilitates blood engorgement. In the last section, current challenges for future studies are outlined.
2020
Benelli, G.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1063398
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 41
social impact