The Quadratic Multiple Knapsack Problem generalizes, simultaneously, two well-known combinatorial optimization problems that have been intensively studied in the literature: the (single) Quadratic Knapsack Problem and the Multiple Knapsack Problem. The only exact algorithm for its solution uses a formulation based on an exponential-size number of variables, that is solved via a Branch-and-Price algorithm. This work studies polynomial-size formulations and upper bounds. We derive linear models from classical reformulations of 0-1 quadratic programs and analyze theoretical properties and dominances among them. We define surrogate and Lagrangian relaxations, and we compare the effectiveness of the Lagrangian relaxation when applied to a quadratic formulation and to a Level 1 reformulation linearization that leads to a decomposable structure. The proposed methods are evaluated through extensive computational experiments.

Polynomial-size formulations and relaxations for the quadratic multiple knapsack problem

Galli L.;
2021-01-01

Abstract

The Quadratic Multiple Knapsack Problem generalizes, simultaneously, two well-known combinatorial optimization problems that have been intensively studied in the literature: the (single) Quadratic Knapsack Problem and the Multiple Knapsack Problem. The only exact algorithm for its solution uses a formulation based on an exponential-size number of variables, that is solved via a Branch-and-Price algorithm. This work studies polynomial-size formulations and upper bounds. We derive linear models from classical reformulations of 0-1 quadratic programs and analyze theoretical properties and dominances among them. We define surrogate and Lagrangian relaxations, and we compare the effectiveness of the Lagrangian relaxation when applied to a quadratic formulation and to a Level 1 reformulation linearization that leads to a decomposable structure. The proposed methods are evaluated through extensive computational experiments.
2021
Galli, L.; Martello, S.; Rey, C.; Toth, P.
File in questo prodotto:
File Dimensione Formato  
QMKP_Final_15May.pdf

accesso aperto

Descrizione: articolo principale
Tipologia: Documento in Pre-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 334.06 kB
Formato Adobe PDF
334.06 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1063741
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact