We discuss a variational model, given by a weighted sum of perimeter, bending and Riesz interaction energies, that could be considered as a toy model for charged elastic drops. The different contributions have competing preferences for strongly localized and maximally dispersed structures. We investigate the energy landscape in dependence of the size of the 'charge', that is, the weight of the Riesz interaction energy. In the two-dimensional case, we first prove that for simply connected sets of small elastica energy, the elastica deficit controls the isoperimetric deficit. Building on this result, we show that for small charge the only minimizers of the full variational model are either balls or centred annuli. We complement these statements by a non-existence result for large charge. In three dimensions, we prove area and diameter bounds for configurations with small Willmore energy and show that balls are the unique minimizers of our variational model for sufficiently small charge.

Quantitative estimates for bending energies and applications to non-local variational problems

Novaga M.;
2020-01-01

Abstract

We discuss a variational model, given by a weighted sum of perimeter, bending and Riesz interaction energies, that could be considered as a toy model for charged elastic drops. The different contributions have competing preferences for strongly localized and maximally dispersed structures. We investigate the energy landscape in dependence of the size of the 'charge', that is, the weight of the Riesz interaction energy. In the two-dimensional case, we first prove that for simply connected sets of small elastica energy, the elastica deficit controls the isoperimetric deficit. Building on this result, we show that for small charge the only minimizers of the full variational model are either balls or centred annuli. We complement these statements by a non-existence result for large charge. In three dimensions, we prove area and diameter bounds for configurations with small Willmore energy and show that balls are the unique minimizers of our variational model for sufficiently small charge.
2020
Goldman, M.; Novaga, M.; Roger, M.
File in questo prodotto:
File Dimensione Formato  
RieszWillmore_final.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 618.52 kB
Formato Adobe PDF
618.52 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1063933
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact