Calendering is a crucial manufacturing process in the optimization of battery performance and lifetime due to its significant effect on the 3D electrode microstructure. By conducting an in situ calendering experiment on lithium-ion battery cathodes using X-ray nano-computed tomography, here we show that the electrodes composed of large particles with a broad size distribution experience heterogeneous microstructural self-arrangement. At high C-rates, the performance is predominantly restricted by sluggish solid-state diffusion, which is exacerbated by calendering due to the increased microstructural and lithiation heterogeneity, leading to active material underutilization. In contrast, electrodes consisting of small particles are structurally stable with more homogeneous deformation and a lower tortuosity, showing a much higher rated capacity that is less sensitive to calendering densification. Finally, the dependence of performance on the dual variation of both porosity and electrode thickness is investigated to provide new insights into the microstructural optimization for different applications in electrode manufacturing.

Microstructural evolution of battery electrodes during calendering

Bertei Antonio
Investigation
;
2020-01-01

Abstract

Calendering is a crucial manufacturing process in the optimization of battery performance and lifetime due to its significant effect on the 3D electrode microstructure. By conducting an in situ calendering experiment on lithium-ion battery cathodes using X-ray nano-computed tomography, here we show that the electrodes composed of large particles with a broad size distribution experience heterogeneous microstructural self-arrangement. At high C-rates, the performance is predominantly restricted by sluggish solid-state diffusion, which is exacerbated by calendering due to the increased microstructural and lithiation heterogeneity, leading to active material underutilization. In contrast, electrodes consisting of small particles are structurally stable with more homogeneous deformation and a lower tortuosity, showing a much higher rated capacity that is less sensitive to calendering densification. Finally, the dependence of performance on the dual variation of both porosity and electrode thickness is investigated to provide new insights into the microstructural optimization for different applications in electrode manufacturing.
2020
Lu, Xuekun; Daemi Sohrab, R.; Bertei, Antonio; Kok Matthew, D. R.; O’Regan Kieran, B.; Rasha, Lara; Park, Juyeon; Hinds, Gareth; Kendrick, Emma; Brett...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1064641
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 167
  • ???jsp.display-item.citation.isi??? 160
social impact